Archive logs by year


M.I. Rochev, A.Ya. Fedorov, D.V. SerebrjakovOn the complex approach to water supply and water disposal systems designing (by the example of the city of Smolensk)

The situation currently formed in the city of Smolensk in the sphere of watersupply and water disposal systems is presented. It is showed that for the city with significant elevations drops it is necessary for water supply system to be zoned. The presence of the only one general zone in the city when the provision of the required pressure in high blocks of flats is carried out by massive construction of swap stations brings to the situation when due to the extreme pressure in the lower part of the city the premature wear of networks and frequent emergency situations occure. And at the same time in areas with increased relief marks the water pressure is not sufficient. The measures which are necessary for provision of uninterrupted work for watersupply and water disposal networks in conditions of the city development are listed. The scheme of the city wastewater treatment plants reconstruction providing the achievement of current requirements to the degree of wastewaters treatment is described.

Solozhenkin P.M.Theoretical bases and practical aspects of electrochemical wastewaters treatment. Appliances for electrochemical wastewater treatment.

The critical analysis of designed and current appliances for electrochemical treatment of wastewaters of different chemical and metallurgical industries is presented. The classification of appliances for electrochemical wastewaters treatment is presented. Advantages of electrochemical treatment method in comparison with other methods are presented.
References: 1. Chanturija V.A., Solozhenkin P.M. Gal'vanohimicheskie metody ochistki tehnogennyh vod: Teorija i praktika [Electrochemical method of technogenic waters treatment], M., Engineering Consulting Center «Akademkniga», 2005, p. 204.
2. Patent 2167110 RF .S1 7 S 02 F 9 / 06. Sposob ochistki proizvodstvennyh stokov i ustrojstvo dlja ego osushhestvlenija [Method of industrial waste waters treatment and plants for its implementation], Solozhenkin P.M., Solozhenkin I.P., Topchaev V.P., Topchaev A.V., Shapirovskij M.R., Zinina L.K., published 20.05.2001, application №14.
3. Patent 2 093 475 RF. S 1 6 S 02 F 1/463. Ustrojstvo dlja gal'vanokoaguljacionoj ochistki stochnyh vod [Plant for electroplanting waste waters treatment], Topchaev V. P., Shapirovskij M. R., Zinina L.K., Mironova Z.S., publ., 20.10.97, application 29.
4. Topchaev V.P. Puti reshenija zadach avtomatizacii na predprijatijah cvetnoj metallurgii [Ways of solving problems of automatization at non-ferrous smelter], Non-ferrous metals, journ., 1996, №12, pp. 75-76.
5. Topchaev A.V. Avtomatizirovannyj tehnologicheskij kompleks ochistki promyshlennyh stokov ot ionov tjazhelyh metallov [Automated technological complex of industrial waste waters treatment from heavy metal ions], Non-ferrous metals, journ., 1999, № 8, pp. 66-68.
6. Zinina L.K., Topchaev A. V., Shapirovskij M.R. Avtomatizirovannyj tehnologicheskij kompleks ochistki promyshlennyh stokov «ATKOPS1»[ Automated technological complex of industrial waste waters treatment «ATKOPS1»], the 2nd congress of preparators of the CIS, abstracts of reports, M., Alteks,publ., 1999. p. 146.
7. Topchaev V.P., Shapirovskij M.R., Gul'din V.I. Optimal'noe upravlenie processom ochistki stokov promyshlennyh predprijatij metodom gal'vanokoaguljacii [Optimal control of industrial waste waters treatment process by method of electrocoagulation], Non-ferrous metals, journ., 1997, № 9, pp. 73-76.
8. Patent 2085504 RF. S1 6 S 02 F 1 / 46, 1/463,G 05 D27/00. Avtomatizirovannaja gibkaja tehnologicheskaja sistema ochistki stokov promylennyh predprijatij [Automated flexible technological scheme of industrial waste waters treatment], Topchaev V. P., Shapirovskij M.R., Gul'din V.I., Mironova Z.E., Bogoslovskaja M.N., publ., 27.07.97, application 21.
9. Feofanov V.A., Dzjubinskij F.A.. Gal'vanokoaguljacija: teorija i praktika besstochnogo vodopol'zovanija [Electrocoagulation: theory and practice of internal-drainage water use], Magnitogorsk, LLC «MiniTip», 2006, p. 368.
10. Patent 2533910 (France). Sposob i ustrojstva dlja ochistki stochnyh vod i rastvorov ot razlichnyh primesej [Method and plant for waste waters and solutions treatment from different additives], Feofanov V.A., Pilat B.V., Zhdanovich L.P. and others,. published in IZR, 1984, issue 52, №3.
11. Patent 4525254 (USA). Sposob i ustrojstva dlja ochistki stochnyh vod i rastvorov ot razlichnyh primesej [Method and plant for waste waters and solutions treatment from different additives], Feofanov V.A., Pilat B.V., Zhdanovich L.P. and others,. published in ISM, 1986, issue 52, 1 №3.
12. Patent 3237246 (FRG). Sposob ochistki vod i apparat dlja ego osushhestvlenija [Method of water treatment and plant for its implementation], Feofanov V.A., Pilat B.V., Zhdanovich L.P. and others, 1982.
13. Lavrinenko E.N., Prokopenko V.A. Vlijanie sostava ishodnogo rastvora na parametry raboty gal'vanokoaguljatora [Effect of oroginal solution composition on working conditions of eletrocoagulator],Obrabotka dispersnyh materialov i sred periodic collection, issue №9, Odessa, scientific development and production center «VOTUM»,publ., 1999, p. 284.
14. Patent 2 057080 RF. IPC C 02 F 1/46 . Sposob ochistki stochnoj vody i ustrojstvo dlja ego osushhestvlenija [Method of waste water treatment and plant for its implementation], Rjazancev A.A, Batoeva A.A., published 27.03 96, application № 9.
15. Rjazancev A.A., Batoeva A.A., Batoev V.B., Tumurova L.V. Gal'vanokoaguljacionnaja ochistka stochnyh vod [Electrocoagulational watse water treatment], Himija v interesah ustojchivogo razvitija,journ., 1996, vol. 4, № 3, pp. 233-241.
16. Rjazancev A.A.,. Batoeva A.A, Batoev V.B,.Korsun L.N. Mehanizmy gal'vanokoaguljacionnoj ochistki stochnyh vod [Mechanisms of electrocoagulational waste water treatment], report of the 2nd regional conference "Liquids. Problems and solutions", Ulan-Ude, Nauka,publ., 1996.
17. Patent 2 130 433 RF. IPC S1 6 S 02 F 9/00, 1/46. Sposob ochistki promyshlennyh stochnyh vod, ustanovka i gal'vanokoaguljator dlja ego osushhestvlenija [Method of industrial waste waters treatment, plant and electrocoagulator for its implementation], Ostrovskij Ju. V., Zaborcev G.M., Shpak A. A.,Nechaj N.Z., published 20.05.99, application N 14.
18. Glushkov V.G., Grishin E.N., Zaborcev G.M., Lunjushkin B.I., Ostrovskij Ju.V., Rjabcev A.D., Shpak A.A. Obezvrezhivanie bytovyh i proizvodstvennyh othodov. Optimizacija obrashhenija s othodami proizvodstva i potreblenija [Disinfection of domestic and industrial wastes. Oprimization of production and consumer waste treatment], abstracts of reports, Yaroslavl, 2000, pp.51-55.
19. Patent 2 079 440 RF. IPC S1 6 S .02 F 1 / 463 . Ustrojstvo dlja gal'vanokoaguljacii [Plant for electrocoagulation], Gromov S.L., Zolotnikov A. N., Korotkevich I.B., Bomshtejn V. E.,Malyshev R.M., published 20.05.97. application №14
20. Patent 2 111 175 RF. S1 6 S 02 F 1/463. Ustrojstvo dlja ochistki stochnyh vod [Plant for waste waters treatment], Malyshev R. M., Zolotnikov A. N, Bomshtejn V. E., published 20.05.98, application №14.
21. Patent 2172298 RF. IPC S1 7 S 02 F 1/463. Ustrojstvo dlja gal'vanohimicheskoj ochistki stochnyh vod [Plant for electochemical waste water treatment], Zhilinskaja E.I., Chanturija V.A., Solozhenkin P.M., Nikitin G.M., Solozhenkin I.P., Solozhenkin O.I., Jur'ev M.P.

Qi yong Yang, J ihua Chen, F eng ZhangControl of membrane pollution in immersed membrane bioreactors with the porous floating load

Membrane pollution is the main obstacle for wide spread occurrence of membrane bioreactors (MBR). The article represents the investigation on efficiency of the hybrid membrane bioreactor (HMBR) with the porous floating load with regard to membrane pollution and particular to formation of yellow cake layers on the membrane surface. For investigation of suspended material effect on filtration characteristics of HMBR the parallel trials of two types of reactors (MBR vs. HMBR) were conducted. In the course of the short-term trial the critical flow of HMBR increased to 20% whereas cake's resistance in HMBR decreased to 86% in comparison with MBR. During long-term trials the level of pressure increasing on suction in HMBR was only 30% of this indicator for MBR showing that the pollution degree of membrane was significantly lower than for MBR. These experimental observations point to the fact that biomass suspended materials play a huge role in processes of filtration and decreasing of pollution resistance. For better understanding of the suspended materials effect on the system operational characteristics the influence of following properties were investigated: cake layers on membrane surface, characteristics of sludge mixture, filterability of clarified water and activated sludge suspensions.

D.V. Serebrjakov, V.V. MorozovThe review of constructional features of the block-modular wastewater treatment plants of low capacity

The most frequently occurring schemes of units for domestic wastewater treatment of modular type intended for local water disposal systems with a low capacity are represented. Some most common constructional faulties inherent in such plants which are known by operation experience are described. Types of loads used in such plants - attached biomass media; issues on biogenous elements removal, wastewater tertiary treatment and sludge treatment are observed. The most common constructions of block-modular plants - biological treatment units on the base of aerotanks and biodisk are observed.
References: 1. Razumovskij Je.S., Medrish G.L., Kazarjan V.A. Ochistka i obezzarazhivanie stochnyh vod malyh naselennyh punktov [Treatment and disinfection of waste waters of small towns], M., 1986, p. 174.
2. Vodootvedenie i ochistka stochnyh vod [Water disposal and waste water treatment], S.V. Jakovlev, Ju.V. Voronov. M, 2004.
3. Serebrjakov. D. V. Ochistka stochnyh vod fil'trovaniem na ochistnyh sooruzhenijah maloj proizvoditel'nosti [Waste water treatment at waste water treatment plants of low capacity], Voda i jekologija: problemy i reshenija [Water and ecology:problems and solutions], 2007, №4, pp. 39-47.
4. Ponomarev V. G., Ponomarev D.A. Obsledovanie i naladka fil'trov v sisteme ochistki stochnyh vod [Inspection and adjustment of filters in the system of waste waters treatment], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary echnique],journ., 2005, №4, pp. 27-29.
5. Razumovskij Je.S., Terent'eva N.A., Juldashev A.A. Ustanovki dlja glubokoj ochistki stochnyh vod malyh naselennyh punktov [Plant for a deep waste water treatment of small towns], M., Pamfilov Academy of Communal Services, issue 2(83), 1991.
6. Zaletova N.A. Issledovanie biologohimicheskogo metoda udalenija soedinenij fosfora iz gorodskih stochnyh vod [Investigation of biochemical method of phosphorus compounds removal from city waste waters], synopsis of a thesis of the candidate of technical science, M., 1979.
7. Al'tovskij G.S., Mel'per V.Z., Gepina G.I. Doochistka gorodskih stochnyh vod [Tertiary treatment of city waste waters], M., 1985.
8. Je.S. Razumovskij, Je.I. Rukin. Ochistnye sooruzhenija «Biodisk» dlja malyh naselennyh mest [Treatment plant "Biodisk" for samll towns water treatment], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary technique], 2005, №4, pp. 27-29.
9. I.M. Tavartkiladze, T.P. Tarasjuk, M.I. Docenko. Ochistnye sooruzhenija vodootvedenija [waste waters treatment plants], Reference book, Kiev, 1988.
10. Davod Kossaj K. Sovershenstvovanie tehnologii ochistki stochnyh vod na vrashhajushhihsja biokontaktorah [Improvement of waste waters treatment technology on rotating biocontactors], sinopsis of a thesis, Saint-Petersburg ,2003.
11. Feofanov Ju.A., Kossaj K. Sovershenstvovanie processa ochistki stochnyh vod v biokontaktorah [Improvement of waste water treatment process in biocontactrs], collection of reports of the International science and practice conference "Reconstruction of Sainr-Petersburg 2003",SPb, Saint-Petersburg State University of Architecture and Civil Engineering, 2002.

N.I. BoykoHigh-voltage pulse electrotechnologies for treatment and disinfection of water and gas emissions (review)

The methods of treatment and disinfection of water and gas emissions with a use of the strong pulse electric field, flashover, corona discharge, ozone and other active particles, broadband radiation. A special attention is paid to the new methods on the base of the pulse corona discharge with ionization enlarged zone. The schemes of the equipment for obtaining of pulses of high voltage used in high-voltage electrotechnologies are represented.
References: 1. Vysokovol'tnye jelektrotehnologii. Uchebnoe posobie po kursu «Osnovy jelektrotehnologii» dlja studentov VTUZov [High-voltage electrotechnics. Study guide on studing "Bases of electrotechnics" for student of technical colleges], O.A. Anoshin, A.A. Beloglovskij, I.P. Vereshhagin and others, edited by I.P. Vereshhagin, M., Moscow Power Engineering Institute,publ., 2000, p. 204.
2. Vysokointensivnye fizicheskie faktory v biologii, medicine, sel'skom hozjajstve i jekologii. Trudy mezhdunarodnoj konferencii [High-intensity physical factors in biology, medicine, agriculture and ecology. Works of the international conference], edited by V.D. Selemir, G.M. Spirov, V.N. Karelin; Sarov, Russian Federal Nuclear Center - All Russiam Research Institute of Experimental Physics, 2005, p. 408.
3. BarbosaCanovas G.V., GongoraNieto M.M., Pothakamury U.R., Swansson B.G. Preservation of Foods with Pulsed Electric Fields. Washington, San Diego: Academic Press, 1999, p. 200.
4. Bojko N.I. KVID - tehnologija. Glava 21 v kn. «Tehnika i jelektrofizika vysokih naprjazhenij» [KVID technology. Chapter 21 in the book "Technique and electrophysics of high-voltage], study guide, edited by V.A. Brzhezic'koiy i V.M. Mihajlov, Kharkiv Polytechnic Institute, Kyiv Polytechnic Institute, LLC «Tornado», 2005, pp. 829-863.
5. Bojko N.I., Bozhkov A.I. Vlijanie kompleksa vysokovol'tnyh impul'sov i drugih fizicheskih faktorov na intensivnost' razmnozhenija Anabaena flos aquae [Effect of high-voltage pulses complex and other physical factors on intensity of reproduction of Anabaena flos aquae], Biofizika, 2002, vol. 47, issue 3, pp. 531-538.
6. Naugol'nyh K.A., Roj N.A. Jelektricheskij razrjad v vode [Electric discharge in water], M., Nauka,publ., 1971, p. 155.
7. Jutkin L.A. Jelektrogidravlicheskij jeffekt [Electrohydraulic effect],L., Mashgiz,publ., 1955, p. 50.
8. Fizika impul'snyh razrjadov v kondensirovannyh sredah [Physics of pulse discharges in condensed medium], materials of the 12th International scientific school of seminarm (22-26 of August 2005), Nikolaev, KP «Nikolaevskaja oblastnaja tipografija»,publ., 2005, p. 177.
9. Hajnackij S.A., Zubenko A.A., Smal'ko A.A. i dr. Issledovanija kompleksnoj ochistki real'nyh gal'vanostokov ot ionov razlichnyh tjazhelyh metallov pri vysokovol'tnyh jelektricheskih razrjadah v reaktorah s granulirovannoj metallozagruzkoj [Investigation of electroplatings wastes treatment from different heavy metalls ions while hogh-voltage electric discharge in reactors with granular metal loading], Fizika impul'snyh razrjadov v kondensirovannyh sredah [Physics of pulse discharges in condensed medium], materials of the 12th International scientific school of seminarm (22-26 of August 2005), Nikolaev, KP «Nikolaevskaja oblastnaja tipografija»,publ., 2005, p. 177.
10. Murakov A.P. Universal'nye ozonnye tehnologii ochistki stochnyh vod himproizvodstv [Comprehensive ozonic treatment technologies of waste waters of chemical industry], Ivanovo, engineering-ecological bureau «Redokssistemy», 1999.
11. Solozhenkin P.M. Teoreticheskie osnovy i prakticheskie aspekty gal'vanohimicheskoj ochistki stochnyh vod [Theoretical bases and practical aspects of electochemical waste water treatment], Voda i jekologija: problemy i reshenija [Water and ecology: problems and solutions],magaz., 2007, N 2, pp. 3-17.
12. Bojko N.I., Borcov A.V., Evdoshenko L.S. i dr. Impul'snyj koronnyj razrjad s rasshirennoj zonoj ionizacii: fizicheskie osnovy poluchenija i perspektivnye oblasti primenenija [Impulse crown discharge with enlarged zone of ionization: physical bases of obtaining and prospective areas of application], Jelektrotehnika i jelektromehanika,journ., 2004, N 3, pp. 98-104.
13. Yankelevich Y., Pokryvailo A. HighPower ShortPulsed Corona: Investigation of Electrical Performance, SO2 removal, and Ozone Generation // IEEE Transactions on Plasma Science.2002. Vol. 30, No. 5. P. 1975 1981.
14. Ponizovskij A.Z., Gosteev S.G., Morozov A.N. i dr. Ochistka blagorodnyh gazov ot gazoobraznyh primesej s pomoshh'ju impul'snogo koronnogo razrjada [Treatment of noble gases from contaminant gases with the use of impulse crown discharge], materials of the 1st All-Russian conference "Ozone and other ecologically friendly oxidants. Science and technology],M., Chemical faculty of the Msocow State University, Knizhnyj dom Universitet,publ., 2005, p. 137.
15. Piskarev I.M., Spirov G.M. Ochistka vody v otkrytyh vodoemah za schet cepnyh reakcij, iniciirovannyh gidroksil'nymi radikalami/ Vysokointensivnye fizicheskie faktory v biologii, medicine, sel'skom hozjajstve i jekologii. Trudy mezhdunarodnoj konferencii [Water treatment of surface water bodies by means of chan reaction initiated by hydroxyl radicals/High-intensity physical factors in biology, medicine, agriculture and ecology. Works of the international conference] / edited by V.D. Selemir, G.M. Spirov, V.N. Karelin. Sarov,Russian Federal Nuclear Center - All Russiam Research Institute of Experimental Physics, 2005, p. 408.
16. Piskarev I.M., Aristova N.A. Generirovanie ozonogidroksil'noj smesi i ee primenenie [Generation of the ozonohydroxylic mixture and its application],materials of the 1st All-Russian conference "Ozone and other ecologically friendly oxidants. Science and technology],M., Chemical faculty of the Msocow State University, Knizhnyj dom Universitet,publ., 2005, p. 184.
17. Bojko N.I., Borcov A.V., Evdoshenko L.S. and others. Metod obezzarazhivajushhej obrabotki tekuchih produktov v potoke pri pomoshhi sil'nyh impul'snyh jelektricheskih polej i iskrovyh razrjadov [ Method of disinfectant treatment of fluid products in the flow by using impulse electric fields and spark discharge], Tehnіchna elektrodinamіka,journ., special issue, part 4, 2006, pp. 83-86.
18. Poljakov N.P. Nanosekundnye ozonatory [Nanosecond ozonizer], Instruments and Experimental Techniques,journ., 2004, N.5, pp. 126-129.
19. Patent 2176366 RF. Mynka A.A., Poljakov N.P. published in BI, 2001, N 33.
20. Patent 2164499 RF S2 SO2F1/78. Ustanovka dlja obrabotki vody jelektricheskimi razrjadami [Plant for water treatmeny by e;ectric discharge], Pel'cman S.S., Radionov I.A., Javorovskij N.A., published 2001.03.27.
21. Ahmedov M.M., Rustamova S.T., Ibragimov A.A. i dr. Vybrosy serosoderzhashhih neorganicheskih soedinenij v atmosferu i puti ih utilizacii [Discharge of sulfur-containing compounds to atmosphere and ways of their utilization], materials of the 4th International conference "Cooperation for solving of waste problems], Kharkov, 2007, pp. 161-162.
22. Babich L.P., Kudrjavcev Ju.G., Petrushin O.N. and others. Ustrojstvo dlja generacii ozona i dezaktivacii dymnyh gazov na osnove jelektricheskogo razrjada, razvivajushhegosja v rezhime ubegajushhih jelektronov [Plant for generation of ozone and deactivation of smoky gas in the base of electric discharge developing in a mode of escaping electrones], Instruments and Experimental Techniques,journ., 2002, N 1, pp. 125-128.
23. Bojko N.I., Borcov A.I., Evdoshenko L.S. Ustanovka dlja konversii toksichnyh gazoobraznyh promyshlennyh othodov [Plant for conversion of toxicant industrial emissions], materials of the 4th International conference Materialy IV Mezhdunarodnoj konferencii "Cooperation for solving of waste problems], Kharkov, 2007, pp. 152-154.
24. Patent 71940 Ukraine C 01 B 13/10. Sposob generirovanija ozona i ustrojstvo dlja ego osushhestvlenija [Method of ozone generation and plant for its implementation], Bojko N.I., printed in an application N 1 on 17.01.2005.
25. Patent 2211800 RF C 01 B 13/11. Sposob generirovanija ozona i ustrojstvo dlja ego osushhestvlenija [Method of ozone generation and plant for its implementation] Bojko N.I., printed in an application N 25 on 10.09.2003.
26. Mesjac G.A. Impul'snaja jenergetika i jelektronika [Impulse energetics and electronics], M., Nauka,publ., 2004, p. 704.
27. Kremnev V.V., Mesjac G.A. Metody umnozhenija i transformacii impul'sov v sil'notochnoj jelektronike [Methods of multiplication and transformation of impulses in high-current electronics], Novosibirsk, Nauka,publ., 1987, p. 226.

N.V. Kobizeva, A.G. Gataullina, N.N. Salischev, O.N. LoginovUse of immobilized micro flora for wastewater treatment from oil products

The capability of the "Lenoil" product immobilized version for utilization of petroleum hydrocarbons and wastewaters of the Ufimsk JSK "Steklonit" tested on the laboratory model of local treatment is represented. Bioproduct "Lenoil" is developed on the base of consortia of microorganism - hydrocarbon destructors Bacillus brevis и Arthrobacter species. This product is intended for utilization of different hydrocarbons polluting solid and water in natural conditions. Bioproduct is supposed to be used in a process of local wastewater treatment polluted with different materials.
References: 1. Jankevich M. I. Formirovanie remediacionnyh biocenozov dlja snizhenija antropogennoj nagruzki na vodnye i pochvennye jekosistemy [Formation of remediational biocenoses for decreasing of anthropogenic load on water and soil ecosystems], synopsis of a thesis of doctor of biological science, M., 2002, p. 50.
2. Patent RU № 2241032 S 12 N 1/20. Sposob ochistki vodnyh poverhnostej ot neftjanogo zagrjaznenija [Method of water surface treatment from oil pollution], O.N. Loginov, Silishhev N.N. and others, declared 03.12.2002; published 27.11.04. application 33.
3. Skrjabin G.K., Koshheenko K.A. Immobilizovannye kletki mikroorganizmov [Immobilized cells of microorganisms], Biotehnologija,journ., M., Nauka,publ., 1984.
4. Forster K.F., Vejz D.A. Jekologicheskaja biotehnologija [Ecological biotechnology], translated from German, L., Himija,publ., 1990, p. 282.
5. Sunceva N.V. Ispol'zovanie immobilizovannoj mikroflory v ochistke stochnyh vod [Use of immobilized microflora in waste water treatment]
6. Patent RU № 2232806 S 12 N 1/20. Konsorcium mikroorganizmov Bacillus brevis i Arthrobacter spp., ispol'zuemyj dlja ochistki vody i pochvy ot nefti i nefteproduktov [ Consortium of microorganisms Bacillus brevis и Arthrobacter spp. used for water and soil treatment from oil and oil products], O.N. Loginov, Silishhev N.N. and others, declared 12.08.2002; published 20.07.04., application 20.
7. Praktikum po mikrobiologii [Workshop on microbiology], study guide for students of higher educational establishments, edited by A.I. Netrusov, M., ”Akademija”,publ., 2005, p. 608.


YU.N. Kirichenko Drinking water and public health of the Kursk region

The data on deterioration of the Kursk region surface waters are presented; it proves the degradation of wastewater treatment plants work and unsatisfactory organization of sanitation and cleaning service. The hydrogeological specification of underground water levels is presented. It is showed that it is human economic activity that to a quite large extend causes a bad effect on underground waters as well as on other elements of geological environment that is clearly seen in areas of the largest concentration of industrial enterprises, in the places of storage of liquid and solid wastes. Among pollutants in underground waters petroleum products, nitrogen compounds, heavy metals chloride dominate. The data on discrepancy of origin quality of underground water level water used for water supply of all 28 areas of the Kursk region to hygienic requirements according to the total alpha-activity that is showed by the content of natural isotopes Ra228 и Ra226 in them which are the main dose-forming radionuclide. The statistics of oncological diseases in the Kursk region can be explained by this fact.

M. Gomez, F. Plaza, G. Garralon, J. Perez, M.A. Gomez Comparative study of physical and chemical methods of purification and disinfection of wastewater and ultrafiltration

The comparative investigation of economical expenses and purified water quality which was obtained by using combination of physical and chemical treatment with ultraviolet disinfection and combination of filtration through granular filling and ultrafiltration at the stage of city wastewaters tertiary treatment was carried out. For this investigation the system of physical and chemical city wastewaters treatment with ultraviolet disinfection was developed. The preprocessing of water was in the coagulation of aluminum sulfate which dose was 100 mg/l, clarification on the layer of suspended sludge (0,8 m3/m2ph) and filtration through sand filter (5,0 m3/m2ph). Ultrafiltration module was equipped with flat polyvinylidene fluoride membranes (pore size 0, 5 microns) and tertiary treatment was carried out in sand pressure filter (8, 0 m3/m2ph). In both systems the purified water of perfect quality was obtained. It met the standards both of physical-chemical (removal of 91 % of suspended materials and 99% of water turbidity) and microbiological (total absence of nematode eggs, coliform bacteria, E.coli and coliphages) indicators. However, though in both cases physical-chemical indicators quality was stable it was discovered that during ultraviolet disinfection the microbiological content of purified water depends on quality of water which is processed, especially in those aspects that concern the transmittance coefficient of the ultraviolet radiation. In contrast, using membrane technology the microbiological content of purified water remained stable. Other control parameters, for example, analysis of the particle distribution by size confirmed a higher quality of water purified by ultrafiltration in comparison with the water treated by physical-chemical method with ultraviolet disinfection. As to economical point of the issue so both technologies are characterized with similar operating costs when the level of capital costs in case of membrane technology applying exceeded the corresponding indicator of the physical-chemical treatment and ultraviolet disinfection twice, that was firstly caused by the high cost of membrane equipment installation.
References: 1. J. Koivunen, A. Siitonen and H. HeinonenTanski, Water Res., 37 (2003) 690– 698.
2. A. Sonune and R. Ghate, Desalination, 167 (2004) 55–63.
3. S. Monarca, S. Feretti, C. Collivignarelli, L. Guzzella,I. Zerbini, G. Bertanza and R.Pedrazzani, Water Res., 34 (2000) pp. 4261–4269.
4. V. Lazarova, P. Savoye, M.L. Janex, E.R. Blatchley and M. Pommepuy, Water Sci.Technol., 40 (1999) pp. 203–213.
5. L. Liberti, M. Notarnicola and D. Petruzzelli, Desalination, 152 (2002) pp. 315–324.
6. Environmental Protection Agency, EPA/832/R92/004, US EPA, Washington, D.C., 1992.
7. D.R.F. Harleman and S. Murcott, Water Sci. Technol., 40 (1999) pp. 75–80.
8. C. Reith and B. Birkenhead, Desalination, 117 (1998) pp. 203–210.
9. S.S. Madaeni, Water Res., 33 (1999) pp. 301–308.
10. G. Tchobanoglous, J. Darvy, K. Bourgeous, J. McArdle, P. Genest and M. Tylla, Desalination, 119 (1998) pp. 315–322.
11. K.N. Bourgeous, J.L. Darby, G. Tchobanoglous, Water Res., 35 (2001) pp. 77–90.
12. Environmental Protection Agency and U.S. Agency for International Development, Guidelines for Water Reuse, EPA/625/R92/004, September, Washington, D.C., 1992.
13. M.H. Adams, Bacteriophages, Interscience Publishers, New York, 1959.
14. R.M. Ayres and D. Mara, Analysis of Wastewater for Use in Agriculture: A Laboratory Manual of Parasitological and Bacteriological Techniques, World Health Organization, Geneva, 1996.
15. APHA, AWWA, and WEF, Standard methods for the examination of water and wastewater, 18th edn., American Public Health Association, Washington D.C., 1992.
16. R. Gehr and H. Wright, Water Sci. Technol., 18 (1998) pp. 15–23.
17. J.G. Jacangelo, J. Laine, K.E. Carns, E.W. Cummings and J. Mallevialle, J. Am. Water Works Ass., 83 (1991) pp. 97–106.
18. M.I. Aguilar, J. Saez, M. Lloreis, A. Soler and J.F. Ortuno, Water Res., 37 (2003) pp. 2233–2241.
19. B. Nicolaisen, Desalination, 153 (2002) pp. 355–360.

S.M. Musaeljan, A.B. Petrosjan Some aspects of the safe operation of hydraulic structures

The problem of the hydraulic structures safe operation provision is complex. The main causes of accidents at discharge hydraulic structures are: low level of operation (45%); wrong estimation of floods (20%); construction defects (25%); designers’ mistakes (10%). The security of hydraulic structures should be a provided system of measures carried out by a proprietor, state inspection agencies of executive branch and state. Besides the main responsibility is the matter of a proprietor of these structures and organization that uses them.
References: 1. Gidrotehnicheskie sooruzhenija [Hydraulic engineering structures],study guide for higher educational establishments, L.N. Rasskazov, V.G. Orehov, Ju.P. Pravdivec and others; edited by L.N. Rasskazova, M., Strojizdat,publ., 1996, pp. 288–292.
2. Serkov V.S. Povyshenie jeffektivnosti kontrolja za gidrotehnicheskimi sooruzhenijami jelektrostancij [ Improvement of effectiveness of power plant waterworks control], Gidrotehnicheskoe stroitel'stvo,journ., 1980, № 7, p. 9 (811).
3. State report on status and management of water resources of the Russian Federation in 2001. Ministry of Natural Resources and Environment of the Russian Federation, Moscow, 2002, p. 147–163.

I.I. Rudneva, O.V. Roshina Assessment of the level of human impact on marine ecosystems using biomarkers of fish

Bioindicators and biomarkers of sea hydrobionts which are used for testing and indication of the marine environment quality were observed. Opportunities and perspectives of their use in biological monitoring of marine ecosystems as well as for bioresources quality analysis were represented.
References: 1. Galloway T. S. Biomarkers in environmental and human health risk assessment. Mar. Pollut. Bull. 2006, V. 53, P. 606-613.
2. Golovenko N.Ja., Karaseva T.L. Sravnitel'naja biohimija chuzherodnyh soedinenij [Comparative biochemistry of foreign compounds], Kiev, Naukova dumka,publ., 1983, p. 200.
3. Jurin V.N. Osnovy ksenobiologii [Bases of xenobiology], Minsk, LLC «Novoe znanie», 2002.
4. Moiseenko T.I. Jekotoksikologicheskij podhod k ocenke kachestva vod [Ecotoxicological approach to water quality assessment], Vodnye resursy [Water resources], journ., 2005. vol. 32, № 2, pp. 184-195.
5. Filenko O.F. Zadachi i priemy biotestirovanija toksichnosti vodnoj sredy. Metody biotestirovanija kachestva vodnoj sredy [Problems and methods of biotesting of aquatic toxicity. Methods of biotesting of water medium quaility], edited by O.F. Filenko, Moscow, Moscow State University,publ., 1989, pp. 3-10.
6.Sytnik K.M., Brajon A.V., Gordeckij A.V., Brajon A.P. Slovar'-spravochnik po jekologii [Reference book on ecology], Kiev, Naukova dumka,publ., 1994, p. 666.
7. Burdin K.S. Osnovy biologicheskogo monitoringa [Bases of biochemical monitoring], Moscow, Moscow State University,publ., 1985, p. 158.
8. Balk L., Larsson A., Forlin L. Baseline studies of biomarkers in the feral female perch (Perca fluviatilis) as tools in biological monitoring of anthropogenic substances. Mar. Environ. Res. 1996. V. 42, 14, pp. 203-208.
9. Goksoyr A., Beyer J., Egas В. et al. Biomarker responses in flounder (Platichthys flesus) and their use in pollution monitoring. Mar. Pollut. Bul. 1996. V. 33, pp. 36-45.
10. Oven L.S., Rudneva I.I., Shevchenko N.F. Otvetnye reakcii chernomorskogo ersha Scorpaena porcus na antropogennoe vozdejstvie [Response of the black sea ruffe on human impact], Voprosy ihtiologii [Journal of Ichthyology], 2000, vol. 40, № 1, pp. 75-78.
11. Krajnjukova A.N. Ispol'zovanie biotestirovanija pri ocenke sostojanija komponentov okruzhajushhej sredy i kontrole istochnikov ih zagrjaznenija v uslovijah Ukrainy [Use of biotesting when estimating of environment components status and control of their pollution sources], from the book Aktual'nye problemy vodnoj toksikologii [Pressing issues of aquatic toxicology], Borek, 2004, pp. 61-80.
12. Adams S.M. Assessing cause and effect of multiple stressors on marine systems. Marine pollution Bulletin. 2005, v. 51, № 812,pp. 649-657.
13. Narbonne J.F. Mechanisms de biotransformation des polutants organiques chez les animaux marines // Oceanis. 1991, V. 17, fasc. 4, pp. 449-458.
14. Gagne F., Macrogliese D.J., Blaise C., Gendron A.D. Occurrence оf compounds estrogenic to freshwater mussels in surface waters in an urban area // Environ. Toxicol. 2001, V. 16, № 3, pp. 260–268.
15. Munkittrick K.R., Dixon D.G. A holistic approach to ecosystem health assessment using fish population characteristics. Hydrobiologia. 1989, V. 188/189, pp. 123-135.
16. Nemova N.N., Vysockaja R.U., Sidorov V.S. Biohimicheskaja indikacija toksicheskogo vozdejstvija na ryb [Biochemical indexing of toxic effect on fish], from the book Aktual'nye problemy vodnoj toksikologii [Pressing issues of aquatic toxicology], Borek, 2004, pp. 81-98.
17. Rudneva I.I. Otvetnye reakcii morskih zhivotnyh na antropogennoe zagrjaznenie Chernogo morja [Response of marine animals on anthropogenic pollution of the Black Sea], synopsis of the thesis of the doctor of biological science, 03.00.29 , Moscow State University, M., 2000, p. 55.

V.P. Kargapolcev, O.A. Mickevich, A.A. Sidenko On verification of water meters and flow meters used in the housing and communal services

Metrological base for verification of water meters and flow meters from the group of heat meters (first of all - torrential units) in most cases are either absent or became obsolete and requires improvements. Hence, for the last years a number of domestic manufacturers have organized the production of torrential units with different levels of automation. In the process of such units operation the question and problems concerning the features of unit models and their applicability for verification of different types of equipment unavoidably occurred. All occurred problems relating to the reason of their occurrence can be divided into 3 groups: faults of unit manufacturers; problems appearing due to the unit owner blame; and complications appearing due to the guilt of manufactures of water meters and flow meters intended to the verification. For providing the verification of water meters and flow meters from the group of heat meters used in the housing and communal services, OKB “Gidrodinamika” has developed torrential calibration rig UPSG-50 (УПСЖ-50) and has been producing it for the last years.
References: 1. Minakov A.A., Pijadov O.G. Eshhe raz o poverke rashodomerov i datchikov rashoda vody na mestah [One more time about on verification of water meters and flow meters], materials of the 26th International science-and-practice conference «Commercial accounting of energy carriers», Saint-Petersburg, 2007, pp. 206-211.
2. Magala V.A., Manin A.L. O «rossijskom vybore» tipa preobrazovatelja [On Russian choice of type of transformation], materials of the 26th International science-and-practice conference «Commercial accounting of energy carriers», Saint-Petersburg, 2007, pp. 193-199.

S.M. Asadov, A.M. AlievProperties of heavy metal ions of oil reservoir water

The chemical composition of Apsheron oil and reservoir waters, concentration of heavy metals in them and ions properties were investigated. It was found out that type and amount of heavy metal within the crude oil and reservoir waters from industrial settlement Neft Daşları depend on depth and horizon of the well. Equilibrium properties of heavy metal ions in reservoir waters in frames of Debye–Hückel limiting law were studied. Their activity concentration and coefficient were defined with regard to ionic strength and particles stability constants for complexes and products including toxic ions of heavy metals containing in reservoir waters. The obtained data on heavy metals ions properties can be used in development of technology of oil and reservoir waters treatment from dangerous and toxic substances.
References: 1. Incedi Ja. Primenenie kompleksov v analiticheskoj himii [Use of complexes in analytical chemistry],translated from English, M., Mir,publ., 1979, p. 376.
2. Bulatov M.I Raschety ravnovesija analiticheskoj himii [Calculations of analytica chemistry balance], L., Himija,publ., 1984, p. 184.

O.V. Arapov, E.A. Kopylova, S.E. Ivanov, S.A. Sobol, V.V. LegunThe use of "Ferroksin" reagent for electroplating wastewaters treatment

Advantages of water treatment ferrate technology based on using oxidants of sodium and potassium ferrates as reagents were represented. These reagents have unique properties: along with oxidizing action they can also facilitates coagulation and disinfection processes. The wide use of this treatment method was constrained due to the absence of ferrates industrial synthesis methods. At CJSC “NPO EKROS” the industrial production technology of the new reagent “Ferroksin” which main active substance is a strong oxidant – sodium ferrate in the degree of iron oxidation (+6) – was developed. At wastewater treatment plants of JSC “Krasniy Oktjabr’ ” the joint trials on processing of different electroplating wastewaters using “Ferroksin” reagent were conducted. The use of “Ferroksin” reagent for electroplating wastewaters treatment is quiet promising not only as an oxidant but also as a coagulant.
References: 1.Kratkij spravochnik fizikohimicheskih velichin [Concise handbook of physical quantities], edited by A.A. Ravdelj and A.M. Ponomareva, L., Himija,publ., 1983, p. 48.
2.Spravochnik po analiticheskoj himii. [Guidebook on analytical chemistry], edited by Lur'e Ju. Ju., M., Himija,publ., 1989, p. 276.
3.Perfil'ev Ju. D., Kulikov L. A., Dedushenko S. K. “Novaja ferratnaja tehnologija ochistki vody” [New ferrative water treatment technology], www.rusozoneassoc. ru
4.Ecological aspects of electroplanting productions: technical manual. Developed by Industry and Environment Office [IEO] of the UN ecological programm (UNEP). Paris CeDex 15 France. Technical report, issue 1, 1993, p. 90.
5.Paal' L.L., Karu Ja.Ja., Mel'der H.A., Repin B.N. Spravochnik po ochistke prirodnyh i stochnyh vod [Reference book on natural and waste waters treatment], M., Vyssh. shk.,publ., 1994, p. 336.

Brian Bolto The interaction of chlorine with flocculants in water treatment: Review

Polyelectrolytes used in water treatment as flocculants either independently or along with mineral coagulants can interact with oxidants used for disinfection; moreover, forming by-products are similar to those substances which appear as a result of reaction between chloride and natural organic substances. The references review shows that at standard concentration of cationic flocculants and chloride usually used for water treatment the formation of trihalomethanes is minimal; and polymer is not the main cause of these compounds formation. In those cases when using flocculant the level of by-product formation appeared to be unacceptably high, as a rule other products contained in the commodity product were identified as their derivatives. The most important among them was acrylamide residual monomer. At the thorough quality control of containing monomer the trihalomethanes formation is insignificant. However, other by-products should be the subject of further investigation. For example, the sum of organic compounds forming from polyamides is 192 μg /l. In case of poly diallyl dimethyl ammonium chloride the level of their formation is significantly lower (12 μg /l)/. It is also announced that another substance that can be formed during chlorination is nitrosodimethylamine limited number of which is formed at work with cationic flocculants, however, its containing becomes considerable only at presence of other nitrogenous compounds. It is necessary to have a large amount of data concerning cationic polyacrylamides on which as it is stated the proper attention has not been paid so far. In particular, this concerns the possible contribution of the monomer cation acrylate. Neither anionic nor nonionic polyacrylamides form significant number of thrihalomethanes. Contribution of such polymers on formation of chlororganic compounds is equal to containing residual monomers. Thus, the selection of the most appropriate polymer should be carried out in accordance with performance process indicators and paying a special attention to absence of low-molecular compounds in it. For this reason it is necessary to conduct a thorough control of containing of monomers and admixtures within a polymer.
1. Aizawa, T., Magara, Y. & Musashi, M. 1991 Problems with introducing synthetic polyelectrolyte coagulants into the water purification process. Wat. Suppl., Jonkoping 9, 27-35.
2. Aksberg, R. & Wagberg, L. 1989 Hydrolysis of cationic polyacrylamides. J. Allp. Pol. Sci. 38, 297-304.
3. Alekseeva, L.P. & Khromchenko, Y.L. 1988 Influence of conditions of reagent treatment of water on the formation of chloroform. Soviet J. Wat. Chem & Tech. 10, 140-144.
4. Bennett, D.M., Bolto, B.A., Dixon, D.R., Eldrigde, R.J., Le, N.P. & Rye, C.S. 2000 Determining the fathe of flocculants by fluoresent tagging. In: Hahn, H.H., Hoffmann, E. & Odegaard, H. (eds) Chemical Water and Wastewater Treatment VI. Springer, Berlin, pp.159-168.
5. Bolto, B.A. & Levin, A.D. 2002 Reaction of polyelectrolytes with disinfectants to produce disinfection by-products. Proceedings of the IWA Water Congress, Melbournce, CD ROM, April 2002.
6. Chang, E.E., Chiang, P.C.,Chao, S.H. & Liang, C.H. 1999 Effects of polydimenthyldiallylammonium chloride coagulant on formation of chlorinated by-products in drinking water. Chemosphere 39, 1333-1346.
7. Chen, W.J. & Weisel, C.P. 1998 Halogenated DBP concentrations in a distribution system. J. Am. Wat. Wks Assoc. 90(4), 151-163.
8. Child P., Kaar, G, Benitz. D.> Fowlie, P. & Hong-You, R. 1991 Reaction between chlorine and a dimethylamine containing polyelectrolyte leading to the formation of N-nitrosodimethylamine. Proceedings of the Fourth National Conference on Drinking Water, Ontario, pp.58-71, 23 September 1990.
9. Choi, J. & Valentine, R.L. 2002 Formation of N- nitrosodimenthylamine from reaction of monochromine: A new disinfection by-products. Wat. Res., 36, 817-824.
10. Davis, M.K., Barrett,S.E., Whang,C.J.,Gou, Y & Liang,S. 2000 N-nictrosodimenthylamine in surface water. Water Quality Technical Conference Proceedings. AWWA, Denver.
11. Degremont, 1991 Water Treatment Handbook, (Vol. 2). Lavoisier Publishing, Paris, pp. 914.
12. Fiege, M.A., Glick, E.M., Munch, J.W., Munch, D.J, Noschang, R.L, & Brass, H.J. 1980 Potential contaminants introduced into water supplies by the use of coagulant aids, In: in Jolley, R.L.> Brungs, W.A., Cumming, R.B. & Jacobs, V.A. (eds) Water Chlorination: Environmental Impact and Healthy Effects. Amm Arbor Science Publishers, Ann Arbor, Michigan, pp.789-799.
13. Fielfing, M., Hutchinson, J., Hughes, D.M., Glaze, W.H. & Weinberg, H.S. 1999 Analytical methods for polymers and their oxidative by-ptroducts. AWWARF Project Report. AWWA Research Foundation, Denver, Colorado.
14. Fiessinger, F., Mallevialle, J. & Bruchet, A. 1983 Fate of polymers in the treatment process. Proceedings of the Seminar on the Use of Organic Polymers in Water Treatment. American Water Works Association Research Division, Denver, Colorado, pp.37-50.
15. Glazse , W.H., Henderson, J.E. & Smith, G. 1978 Analysis of new chlorinated organic compounds formed by clorination of municipal wastewater. In: Jolley, R.L. (ed.) Water Chlorination: Environmental Impact and Health Effects, (Vol. 1), Ann Arbor, Michigan, pp. 139-159.
16. Graham, J.E., Andrews, S.A., farquhar, G.J. & Meresz, O. 1996 Thira, as an NDMA precursor in drinking water treatment. Proceedings of the Amerocan Water Works Association Watrer Quality Technlogy Conference, (Vol. C), Toronto, pp.15-27, 12-16 November 1995.
17. Jobb, D.B., Hunsinger, R.B., Meresz, O. & Tagichi, V.Y. 1992 A study of the occurence and inhibitation of formation of N-nitrosodimethylamine in the Ohsweken water supply. Proceedings if the Fifth National Conference on Drinking Water, Winninpeg, pp. 241-252.
18. Kaiser, K.L.E. & Lawrence, J. 1997 Polyelectrolytes: potentional chloroform precusors. Science 196, 1205-1206.
19. Kohut, K.D. & Adrews, S.A. Polyelectrolytes as amine precursors for N-nitrosodimenthylamine in drinking water. Proceedings of the American Water Works Association Annual Conference, Anaheim, California, 15-19 June 2003.
20. Kruger, D. & Gedney W. 2000 Case studies of N-nitroso dimenthylamine in groundwater supplies, Proceedings of the Water Quality Technical Conference. AWWA, Denver, Colorado, 5-8 November 2000.
21. Lafuma, F. & Durand,G. 1989 C NMR of cationic copolymers of acrylamide. Poly. Bull. 21, 315-318.
22. Lee, J-F., P.-M.,Tseng, D.-H. & Wen, P.-T. 1998 Behavior of organic polymers on drinking water purification. Chemosphere 37, 1045-1061.
23. Letterman, R.D. & Pero, R.W. 1990 Contaminants on polyelectrolytes used in water treatment. J. Am. Wat. Wks. Assoc. 82(11), 87-97.
24. Mallevialle, J., Bruchet,A. & Fiessinger, F. 1984 How safe are organic polymers in water treatment? J. Am. Wat. Wks. Assoc. 76(6), 87-93.
25. Mitch, W.A. ^ Sedlak, D.L. 2002 Formation of N-nitroso deimethylamine (NDMA) from dimenthylamine during clorination. Environ. Sci. Technol. 36, 588-595.
26. Morris, C.J. 1978 The chemistry of aqueous of chlorine in relation to water chlorination In:Jolley, R.L.(ed) Water Chlorination: Environmental Impact and Health Effect, (Vol.1). Ann Arbor Science Publishers, Ann Arbor, Michingan, pp.21-35.
27. Njam,I.& Trussell, R.R. 2001 NDMA formation in water and wastewater. J. Am.Wat. Wks Assoc. 93(2), 92-99.
28. Smith-Palmer, T., Campbell, N., Bowman, J.L. & Dewar P. 1994 Floculation behavior of some catonic polyelectrolytes. J. Appl. Polym. Sci. 52, 1317-1325.
29. Soponkanaporn, T. & Gehr, R. 1989 The degradation of polyelectrolytes in the environment: Insights provided by size exclussiom chromatography measurements. Wat. Sci. Technol. 21, 857-868.
30. Stockham, P. & Morran, J. 2000 Potential disinfection by-products from poly (DADMAC) beased polyelectrolytes. Proceedings of the WaterTECH conference. Australian Water Association, Sydney, 9-13 April 2000.
31. Symons, J.M., Bellar, T.A., Carswell, J.K., DeMarco, J., Kropp, K.L.,Robeck, G.G., Seeger, D.R.,Slocum, C.J., Smith, B.L. & Stevens, A.A. 1975 National organics reconnaissance survey for halogenated organics. J. Am.Wat. Wks Assoc. 67, 634-647.
32. Wilczak, A.J., Assadi-Rad, A., Lai, H.H., Hoover, L.L., Smith, J.F., Berger, R., Rodigari, F., Beland, J.W., Lazzelle, L.J., Kincannon, E.G., Baker, H. & Heaney, C.T. 2003.
33. Xie,Y., Reckhow, D.A. & Springborg. D.C. 1998 Analyding HAAs and ketoacids without diazomethane. J. Am. Wat. Wks Assoc. 90(4), 131-138.


I.G. Shaihiev, G.A. MinlegulovaIndustrial waste water treatment by wastewaters of other industries. Part 1

Using wastewaters of one industry for wastewater treatment of another industry, the pollutants which are contended in the first wastewaters are chemical reagents for removal and neutralization of toxic admixtures of the second ones. In this case the process of wastewater treatment by different chemical and physical-chemical methods is replaced by simple wastewaters mixing, but surely in certain proportions. The article represents methods of joint treatment of different origin wastewaters by means of reactions of neutralization, oxidation, regeneration as well as processes of coagulation, flocculation, complexation, chemisorption with emission of admixtures interaction products in the form of solid disperse phase.
References: 1. Laskov Ju. M. Ochistka proizvodstvennyh stochnyh vod [Industrial waste waters treatment], Ju. M. Laskov, Ju. V. Voronov, M., Strojizdat,publ., 1985, p. 335.
2. Jakovlev S.V. Ochistka proizvodstvennyh stochnyh vod [Industrial waste waters treatment], Jakovlev S.V. Karelin Ja. A., Laskov Ju. M., Voronov Ju. V. , M., Strojizdat,publ., 1985.
3. Jurin V. A. Ochistka stochnyh vod cehov himicheskogo frezerovanija [Waste waters treatment of chemical etching department], M., Strojizdat,publ., 1972, pp. 184 – 185.
4. Application 54 – 18473 Japan, ICP B 01 J 1/09. Sposob nejtralizacii stochnyh vod, obrazujushhihsja pri regeneracii ionoobmennyh smol [Method of waste waters neutralization forming by ion exchange resin regeneration], Kanamassa Norio, Haraguti Judzi. declared 13.07.1977, № 5282970; published 10.02.1979.
5. Patent 5121393 Japan, ICP C 02 S 5/02. Sposob nejtralizacii jeljuatov ionoobmennyh ustanovok [Method of ion exchange units eluate neutralization], Isikova Kaori, declared 12. 06. 1972, № 4758428; published 2. 07. 1976.
6. Patent 583742 Japan, ICP B 01 J 49/00, S 02 F 1/42. Nejtralizacija regenerirujushhih rastvorov iz ionoobmennyh apparatov [Neutralization of regeneration solutions from ion exchange units], Ando Jetisiro, Morita Tjecuo, Asida Hitosi, Tanada Akio. declared 13.07.1979, № 5488302; published 22.01.1983.
7. Patent 5143302 Japan, ICP C 02 S 5/02. Nejtralizacija shhelochnyh stochnyh vod [Neutralization of alkaline waste waters], Fukujama Jodzi, Chutimoro Hidjeki. declared 25.12.1971, № 471126; published 20.11.1976.
8. Paent. 54 – 133475 Japan, ICP C 02 S 5/02. Ochistka stochnyh vod gipsovogo proizvodstva [Gypsum production industry waste waters treatment], Josida Gupsin, Konisi Nobuaki. declared 7.04.1978; published 17.10.1979.
9. Cantera Carlos S. Efluentes de curtiembre evaluacion de modernos procesos de depilado / Cantera Carlos S. // Rev. asoc, argent. quim. y tech. ind. cuero, 1977, vol. 18, № 3, pp. 52–66.
10. Patent 76228 Poland, ICP C 02 S 5/02. Sposob oczyzania sciekow Chrusciel J., applicant and patent holder Polska Akademia Nauk, Instytut Budownictwa Wodnego, declared 10. 02.1971, № 146127; published 05. 05.1975.
11. Lebedeva Ju.D. Promyshlennye stochnye vody. Stochnye vody neftepererabatyvajushhih zavodov i neftepromyslov [Waste waters of iol-refining plants and oil fields], Ju.D. Lebedeva, T.E.Nagibina, I.L. Mongajt, M., Medgiz,publ., 1960, p. 207.
12. Strukov, F.I. Ochistka stochnyh vod promyshlennosti sinteticheskogo kauchuka i lateksov [Waste waters treatment of synthetic rubber and latex production industry], F.I. Strukov, E.N. Makeeva, V.P. Svatikov, Ja.I. Taradin. Thematical review, M., JSC "CNIITJeNeftehim", 1981, p. 62.
13. A.S. 316657 USSR, ICP S02S5/02. Sposob ochistki stochnyh vod proizvodstva tiokola [Treatment of thiocol production industry waste waters], V.P. Svatikov, F.I. Strukov, declared 12.05.69; published 17.12.71.
14. Svatikov, V.P. Razrabotka fizikohimicheskogo sposoba ochistki stochnyh vod proizvodstva tiokola [Development of physical-chemical method of thiocol production industry waste waters treatment], V.P. Svatikov, V.I. Strukov, Je.F. Nekricuhina Promyshlennost' sinteticheskogo kauchuka, journ., 1973, № 3, pp. 12-14.
15. A.S. 648535 USSR, ICP 2 S02S5/02. Sposob ochistki stochnyh vod [Method of waste waters treatment], F.I. Strukov, V.P. Svatikov, T.P. Filinova, declared 23.02.77; published 25.02.79.
16. A.S. 887471 USSR,ICP C02F1/58. Sposob ochistki stochnyh vod proizvodstva tiokola [Method of thiocol production industry waste waters treatment], F.I. Strukov, V.P. Svatikov, T.P. Pankova, G.S. Tihomirov, R.R. Safin, A.Je. Kosharskij, V.F. Tarutina, № 28886079/2926; declared 20.02.80; published 07.12.81.
17. Patent 1116021 USSR, ICP 3 S02F 1/58. Sposob ochistki stochnyh vod proizvodstva tiokola [Method of thiocol production industry waste waters treatment], F.I.Strukov, V.P. Svatikov, T.P. Pankova, G.S. Tihomirov, R.R. Safin, L.M. Iozefson, A.Je. Kosharskij, N.V.Panova, № 3563965/2326; declared 17.03.83; published 30.09.84.
18. Shajhiev I.G. Ispol'zovanie othodov proizvodstva dlja uluchshenija jekologicheskoj obstanovki predprijatija. Issledovanie ochistki serosoderzhashhih stochnyh vod proizvodstva tiokolov othodami proizvodstva formalja [Use of industrial waste for improvement of ecological environment of the enterprise], I. G. Shajhiev, S. A. Arsen'ev, N.P. Pavel'eva; Himicheskaja promyshlennost' [Industry and chemistry],journ., 2007, vol. 84, № 2, pp. 97-100.
19. Mongajt I. L. Issledovanie processov ochistki stochnyh vod predprijatij viskoznogo volokna [Investigation of treatment processes of viscose fiber enterprises waste waters] I. L. Mongajt, G. I. Fishman; Waste water treatment: works of science and research institute "VODGE", collection of scientific works,science and research institute "VODGEO", M., 1962, pp. 234-261.
20. Patent 1703624 USSR, ICP 5 C02F 1/62. Sposob ochistki stochnyh vod ot medi [Method of waste waters treatment from copper], A. Ja. Rozenberg, B. Je. Geller, M. A. Titov, E. A. Tihanchuk; № 4730985/26; declared 22.08.89; published 07.01.92.
21. Maksin V. I. Osazhdenie osnovnyh solej medi pri vzaimodejstvii shhelochnyh i kislyh travil'nyh rastvorov [Precipitation of cooper basic salts when interacting with alkaline solutions and acid dip], V. I. Maksin, O.Z. Standritchuk, N. F. Falendysh, T. E. Ivanova, E. A. Karpenko; Himija i tehnologija vody [Water chemistry and technology],journ., 1990, vol. 12, № 3, pp. 219-222.
22. Zajcev Ju.S. Vydelenie medi iz promyvnyh vod proizvodstva diallilftalata [Copper removal from washwaters of diallyl phthalate production enterprise], Ju.S. Zajcev and others; Himija i tehnologija vody [Water chemistry and technology],journ., 1986, №2, pp. 91-92.
23. Lebedeva Ju. D. Promyshlennye stochnye vody. Stochnye vody neftepererabatyvajushhih zavodov i neftepromyslov [Industrial waste waters. Waste waters of oil-refining plants and oil-fields], Ju. D. Lebedeva, T.E. Nagibina, I. L. Mongajt, M., Medgiz,publ., 1960, p. 207.
24. Patent 2185336 Russia, ICP 7 C02F 1/66. Sposob nejtralizacii promyshlennyh stokov, soderzhashhih nefteprodukty i organicheskie komponenty [Method of neutralization of waste waters containing oil products and organic components], N. P. Vershinin, I. N. Vershinin, I.V. Rudenko, S. G. Ivashhenko, A. Ju. Hmelevskij; № 2001119428/12; declared 16.07.01; published 20.07.02.
25. Uzel okislenija i nejtralizacii sernistoshhelochnyh stokov zavoda jetilena: rabochij proekt. Obshhaja pojasnitel'naja zapiska [Oxidation site and neutralization of sulfuric-alkaline waste waters of ethylene production plants: working draft. Executive summary], JSC «Nizhnekamskneftehim», Nizhnekamsk, 1999, p. 11.
26. Patent 2179955 Russia, ICP 7 C02F 1/58. Sposob nejtralizacii stochnyh vod, soderzhashhih metally [Method of neutralization of waste waters containing metals], V.P.Zuev, I. R. Gatin, M. A. Loginov, V. M.Shatilev, A. B. Bagaviev, O.I. Jakusheva ; applicant and patent holder JSC «Nizhnekamskneftehim». № 2000126161/12; declared 17.10.00; published 27.02.02.
27. Patent 3468797 USA, ICP 21042. Pickle liquor disposal / Myers Clyde V.; applicant and patent holder Diamond Shamrock Corp. – declared 28.03.68; published 23.09.69.
28. Patent 947078 USSR, M.Kl3 S 02 F 1/66. Sposob ochistki sul'fatsoderzhashhih stochnyh vod sernokislotnogo travlenija [Method of treatment of sulfate-containing waste waters of sulfuric etching], Ju.F. Budeka; applicant and patent holder Belarusian National Technical University; № 3002363/2326; declared 04.08.80; published 30.07.82.
29. Effective treatment solves liquor problem. Public Works. 1969, vol. 100, № 6, pp. 106-107.
30. Patent 270495 Czechoslovakia, ICP 4 S 02 F 1/52, S 02 F 1/58. Zpusob cisteni kyselych odpadnich vod zejmena a obsahem anorganichych pigmenti; A. Grunwald, J. Dvorak, S. Fesar, M. Buluka, J. Charamza. № 717088; declared 01.11.88; published 04.06.91.
31. Patent 1641779 USSR ICP 3 S02F 1/66. Sposob nejtralizacii kislyh stochnyh vod jodobromnogo proizvodstva [Method of neutralization of acid waste waters of iodide-bromine production industry], T.K. Hoshanov; applicant and patent holder Turkmenskij gosudarstvennyj nauchnoissledovatel'skij i proektnyj institut neftjanoj promyshlennosti [Turkmenia State research and design institute of oil industry], № 4279305/26; declared 07.07.87; published 15.04.9.

P. Huang, S. Qin, Q. Zhao, X. GuoOperational commissioning of sewage treatment plants in Mudanjiang. Factors effecting phosphorus removal

The successful conduction of adjustment work at wastewater treatment plants is the key event both for its further use and for the achievement of efficient phosphorus removal. After completion of wastewater treatment plants construction in the city of Mundanjiang (Heilongjiang province, China) with a performance of 100 000 m3 per day, the new method of operational commissioning of wastewater treatment plants with continuous wastewater feed for plants was tested. The method differs from the traditional method of operational commissioning in adding of imported active sludge in an aerotank during the unsteady feed of wastewaters. The active sludge grows directly in the aerotank without adding the sludge from other wastewater treatment plants. After a month use in the regime of adjustment the sludge dose increased to 2, 5 kg/m3 while the sludge index increased to almost 80% that proves a fast and easy operational commissioning to performance indicators. After the successful operational commissioning the investigation of phosphorus removal was conducted while the special attention was paid to such factors as oxidation-reduction potential (ORP) and nitrate/nitrite azote. With alteration of aerobic and anaerobic regimes in the aerotanks the efficiency of phosphorus removal may reach 80%. Experiential results showed that in the anaerobic zone the critical levels for biological removal of phosphorus are: ORP – 140 mV, nitrate azote 2 mg/l while optimal conditions for phosphorous removal in the aerotanks are: dissolved oxygen content in the aerobic zone at the level of 1, 7 – 2, 5 mg/l; BOD5/ Rcom – 20-30, sludge index at the level 70-80 and sludge age of 5 days.
References: 1. Otgaard K., Christensson, M., Lie E., Jonsson K. (1997) Anoxic biological phosphorus removal in a fullscale UCT process, Wat. Res., 31(11), pp. 2719-2726.
2. Daigger T. and Nolasco D. (1995) Evaluation and design of fullscale wastewater treatment plants using biological process models”, Wat. Sci.Tech., 31(2), pp. 245-255.
3. Kuba T., vanLoosdrecht M.C.M., Heijnen J.J. (1997) Biological dephospatation by actvated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a fullscaled waste water treatment plant, Wat. Sci. Tech., 36(12), pp. 75-82.
4. Minp V.T. and Matsuo T. (1988) Biological mechanism of acetate uptake mediate by carbohydrate consumption in excess phosphorus removal systems, Wat. Res., 22, pp. 565-570.
5. Hu ZR, Wentzel M. C. (2002) Anoxic growth of phosphateaccumulating organisms (PAOs) in biological nutrient removal activated sludge systems, Wat. Res., 36, pp. 4927-4937.
6. LeslieGrady C P, DaggerGlen T. (1999) Biological wastewater treatment (2nd) [M], New York:Marcel Dekker,Inc, 1999.
7. Paul E., PlissonSaune S., Mauret M. (1995) Process state evaluation of alternating oxicanoxic activated sludge using ORP, pH,and DO, Wat. Sci. Tech, 38(3), pp. 299-306.
8. Comeau Y., Oldham W.K. and Hall K.L. (1987) Dynamics of carbon reserves in biological dephosphatation of Wastewater, An IAWPRC specialized conference in Rome, pp. 39-55.
9. Gerber A., Mostert E.S., Winter,C.T., and deVillers R.H. (1986) The effect of acetate and other shortchain carbon compounds on the kinetic of biological removal, Wat. S.A. 12(1), p. 712.
10. Hu ZR., Wentzel M.C., Ekama G.A. (2002) A general kinetic model for biological nutrient removal activated sludge system, Wat. Res., (submitted for publication).
11. Carlsson and Aspegren H. (1996) Interactions between wastewater quality and phosphorus release in the anaerobic reactor of the EBPR process, Wat. Res., 30 (6), pp. 1517-1527.
12. Barker P.S. and Dold P. L. (1996) Denitrification behaviour in biological excess phosphorus removal activated sludge systems, Wat. Res. 30(4), pp. 769-780.
13. Kuba T., Smolders G.J.F., van Loosdrecht M.C.M., Heijinen J.J. (1993) Biological phosphorus removal from wastewater by anaerobicaerobic SBR, Wat. Sci. Tech., 27(5/7), pp. 241-252.

D.V. Serebrjakov, P. Tuomikoski Reconstruction of typical radial pits using Finnchain scraper system

The difficulties which appear at wastewater treatment plants during operation of primary settling tanks and secondary settling tanks wherein a typical facility for sludge disposal (cesspool emptiers and sludge scrapers) is installed are listed. The facility which avoids these difficulties - Finnchain scraper system (Finland) - is offered. The principle of the facility maintenance is described; the main operational indicators are presented; its advantages are listed.
References: 1. Beljaev A.N., Vasil'ev B.V., Maskaleva S.E., Mishukov B.G., Solov'eva E.A. Udalenie azota i fosfora na kanalizacionnyh ochistnyh sooruzhenijah [Removal of nitrogen and phosphorus at waste water treatment plants], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary technique], №9, 2008.
2. Mishukov B.G., Solov'eva E.A. Udalenie azota i fosfora na ochistnyh sooruzhenijah gorodskoj kanalizacii [Removal of nitrogen and phosphorus at waste water treatment plants], appendix to the magazine "Voda i jekologija: problemy i reshenija" [Water and ecology:problems and solutions], SPb, 2004.
3. Mishukov B.G., Solov'eva E.A. Rezul'taty raboty vtorichnyh radial'nyh otstojnikov i ih matematicheskaja interpretacija [Results of work of secondary setlling tanks and their mathematical interpretation], Voda i jekologija [Water and ecology], №2, 2011.

S. Sayed, S. Tarek, I. Dijkstra, C. MoermanOptimal mode of capillary nanofiltration elements for waste water treatment

Direct capillary nanofiltration is a new method used for the single step surface waters treatment for water supply aims as well as wastewaters without preprocessing. Membrane module of DCNF combines the best qualities of capillary membranes of ultrafiltration and nanofiltration that is showed in attitude of removal of dissolved organic carbon, color of water, bacteria, viruses and pesticides from water. The method of direct capillary filtration was used for single-step treatment of Twente Canal surface waters in Netherlands. In this work the method of the direct capillary nanofiltration was used (for the first time) for wastewater treatment in conditions of continuous and stable performance. The important work aspect was the definition of optimal regime for the pilot plant use. The defined optimal conditions are the following: filter cycle - 15 minutes, flow rate of undiluted household wastewaters – 20 l/m2 per hour. The filtration can be conducted continuously providing a stable performance of about 8 hours. Then the plant should be exposed to chemical treatment as a result of membrane modules pollution. During the nanofiltration the significant retentivity is reached by such quality indicators as COD, BOD, content of iron and phosphate, total number of bacteria and a bit worse indicators concerning manganese retention while ammonium removal level appeared to be extremely low.
References: 1. X. Lu, X. Bian and L. Shi, Preparation and characterization of NF composite membrane, J. Membr.Sci., 210 (2002) pp. 3–11.
2. N. Hilal, H. AlZoubi, N.A. Darwish, A.W. Mohamed and M. Abu Arabi, A comprehensive review of nanofiltration membrane: Treatment, pretreatment, modelling and atomic force microscopy, Desalination, 170 (2004) pp. 281–308.
3. B. Van der Bruggen and C. Vandecasteele, Removal of pollutant from surface water and ground water by nanofiltration: overview of possible application in the drinking water industry, Environ. Pollution, (2003) pp. 435–445.
4. B. Van der Bruggen, I. Hawrijk, E. Cornelissen and V. Vandecasteele, Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes, Separ. Purif. Technol., 31 (2003) pp. 193–201.
5. W.J. Conlon and S.A. McClellan, Membrane softening: treatment process comes of age, J. AWWA, 81(11) (1989) pp. 47–51.
6. P. Eriksson, Nanofiltration extends the range of membrane filtration. Environ. Prog., 7(1) (1988) pp. 58–62.
7. F.E. Duran and G.W. Dunkelberger, A comparison of membrane softening on 3 South Florida groundwaters. Desalination, 102 (1995) pp. 27–34.
8. P. Fu, H. Ruiz, K. Thompson and C. Spangenberg, Selecting membranes for removing NOM and DBP precursors, J. AWWA, 86 (1994) pp. 55–72.
9. W.G.J. Van der Meer and J.C. Van Winkelen, Method for purifying water, in particular groundwater, under anaerobic conditions, using a membrane filtration unit, a device for purifying water, as well as drinking water obtained by such a method; European Pat. 1034139, 2001; US Pat. 6395182, 2002.
10. S. Sayed, I. Dijkstra and C. Moerman, Capillaire nanofiltratie: eenstaps behandeling voor ruw huishoudelijk afvalwater, H2O, 14/15 (2005) pp. 53–55.
11. I. Dijkstra, H. Futselaar and D. Brummel, Direct capillary nanofiltration for surface water treatment AWWA Membrane Technology Conference, Phoenix, AZ, 2005.
12. M. Afonso and R. Yafiez, Nanofiltration of wastewater from the fishmeal industry, Desalination, 139 (2001) p. 429.
13. H. Futselaar, H. Schonewille and W. van der Meer, Direct capillary nanofiltration — a new highgrade purification concept, Desalination, 145 (2002) pp. 75–80.
14. J.P. Chen, S.L. Kim and Y.P. Ting, Optimization of membrane physical and chemical cleaning by statistical design approach, J. Membr. Sci., 219 (2003) pp. 27–45.
15. A. Sagiv and R. Semiat, Backwash of RO spiral wound membranes, Desalination, 179 (2005) pp. 1–9.
16. H. Toyozo and N. Shuji, Filtration of activated sludgecontaining wastewater by membrane separation module, Daicel Chemical Industries, Ltd., Japan, Jpn. Kokai Tokkyo Koho, 2001, p. 9.
17. A. Masaaki; W. Terutaka and Y. Hiroshi, Treatment system having spiral membrane element and method for operating the treatment system, Nitto Denko Corporation, Japan, Eur. Pat. Appl., 2003, p. 26.


E.V. PleshakovaGenetic analysis of microbial consortia of model equipment for treatment of wastewaters containing sulphonol; perspective of its practical use.

It is found that the process of sulfinol destruction in Рseudomonas cepacia stains selected from the consortia structure of model purification equipment is controlled by the plasmid pSf1 (54 kbp), in Р. Aeruginosa strains – by plasmid pSf2 (4,3 kbp). Both plasmids determinate the first stage of sulphonol biodegradation which is the desulfonation. It is showed that changes of the consortium plasmid profile which provide the sulphonol destruction represent the variation of number and proportion of bacterial spices that make a microbial community. The developed methods of plasmid screening of consortia destructing anionic surfactant are recommended for supervision of wastewater treatment plants work.
References: 1. Jekologicheskij monitoring: shag za shagom [Ecological monitoring: step by step], edited by E.A. Zaik, M., Mendeleev Russian University of Chemistry and Technology, 2003, p. 252.
2. Chekandina G.N., Olejnikova T.A., Kudymova T.V.and others. Sravnitel'naja toksichnost' oksijetilirovannyh alkilfenolov. Opyt ispol'zovanija neonolov AF9n oksijetilirovannyh alkilfenolov v narodnom hozjajstve [Comparative toxicity of nonylphenol ethoxylates ], collection of scientific works of All-Union workshop, Shebekino, Belgorod, 1990, pp. 24-25.
3. Stavskaja S.S., Udod V.M., Taranova L.A., Krivec I.A. Mikrobiologicheskaja ochistka vody ot poverhnostnoaktivnyh veshhestv [Microbiological water treatment from surface-active substances], Kiev, Nauk. dumka,publ., 1988, p. 184.
4. Mogilevich N.F. Immobilizovannye mikroorganizmy v ochistke vody. Preimushhestva i perspektivy. Mikrobiologija ohrany biosfery v regionah Urala i Severnogo Prikaspija [ Immobilized microorganisms in water treatment. Advantages and prospectives. Microbiology of biosphere protectiocn in the regions of Ural and Northen region of Caspian Sea], collection of scientific works of the All-Union symposium,Orenburg, 1991, p. 78.
5. Lijun X., Bochu., Qinghong W., Liu L. Kinetics of degradation by immobilized cells with ultrasonic irradiation // Colloids Surf. B: Biointerfaces. – 2005. – V. 45, N 34, pp. 162-166.
6. Swisher R.D. Ethoxylate nonionics // Surfactant scince series. – 1970, V. 3, pp. 245-254.
7. Rotmistrov M.N., Stavskaja S.S., Krivec I.A. i dr. Bystryj metod obnaruzhenija bakterij, razlagajushhih alkilsul'faty [Rapid method of detection of bacteria resolving alkylsulfates], Prikl. biohim. i mikrob.,journ., 1977, vol. 13, № 1, pp. 147-149.
8. Uchebnometodicheskoe posobie po genetike bakterij [Studyguide on bacteria genetics], Saratov, Saratov State University, 1979, p. 17.
9. Birnboim H.C., Doly J. A rapid alcaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 1979, Vol. 7, pp. 115131523.
10. Eckhardt T. A rapid method for the identification of plasmid deoxyribonycleic acid in bacteria. Plasmid. – 1978, Vol. 1, pp. 584-588.
11. Dubrovskaya E.V., Pleshakova E.V., Panchenko L.V., Muratova A.Yu. Structure of ABSand Aphdegrading microbial communities // Abstr. Book of 9th European Congress on Biotechnology. – Brussels, 1999. – ECB9/2717.
12. Willets A.J., Cain R.В. Microbial metabolism of alkylbenzenesulfonates. Biohem. J. 1970, V. 120, N 4, pp. 28-39.
13. Rotmistrov M.N., Taranova L.A., Radchenko O.S. Bakterial'naja destrukcija alkilbenzolsul'fonatov [ Bacterial destruction of alkylbemene sulfonate],report of the USSR Academy of Science, 1986, vol. 288, № 1, pp. 246-248.

Ecology and hydrology of water reservoirs

L.A. Margarjan, S.G. Minasjan, G.P. Pirumjan Comparison of the Canadian and the Specific Combinatorial indexes of water quality in the estimation of the river Razdan pollution density

The comparison of the Canadian and Specific Combinatorial water quality indexes of the river Razdan was carried out using standards for fishing areas and requirements for drinking water supply sources. The level of the river pollution density was defined from its source to the mouth on the basis of 31 hydrochemical indicators during 2005-2007 years. According to obtained information, the upstream by fishery management standards belongs to the middle III (polluted) grade, by drinking water supply requirements – to II (weakly polluted) grade while the downstream belongs to the IV (dirty) and III (polluted) grades. The most polluted section in the river is observed in the point №55 – lower the city of Yerevan where the extremely high anthropogenic impact was detected. It is discovered that both water quality indexes are equal in complex river estimation by hydrochemical indicators in terms of fishing areas standards and drinking water supply sources requirements and can be both used for estimation and investigation of river water quality.
References: 1. Nikanorov A.M., Nauchnye osnovy monitoringa kachestva vody [Scietific bases of water quality monitoring], Saint-Petersburg, Gidrometeoizdat,publ., 2005, p. 577.
2. Margarjan L.A., Minasjan S.G., Pirumjan G.P., Kompleksnaja ocenka zagrjaznennosti vod reki Razdan [Complex assessment of the Radan river pollition], Information technologies and management, 2006, №42, pp. 102-118.
3. Margarjan L.A., Ispol'zovanie razlichnyh kompleksnyh metodov ocenki zagrjaznennosti vody pri klassifikacii kachestva vody reki Sevdzhur [Use of different complex methods of water pollution assessment when classifying the river Sevdzhur water quality], Information technologies and management, 2006, №42, pp. 94-101.
4. Saffran K., Cash K., Hallard K. Canadian Water quality guidelines for the protection of aquatic life. CCME water quality index 1.0. Users Manual: Canadian Council of Ministers of the environment, p. 20015.
5. Nikanorov A.M., Organizacija i funkcionirovanie monitoringa kachestva vody r.Severskij Donec na territorii Rossii i Ukrainy [Organisation and functioning of water quality monitoring of the river Severski Donets on the territory of Russia and Ukraine], Rostov-on-Don, Gidrometeoizdat,publ., 2004, p. 374.
6. Resursy poverhnostnyh vod SSSR. Bassein r.Araks [Resources of the surface waters of the USSR. Basin of the river Aras], Moscow, Gidrometeoizdat,publ., 1973, vol. 9, issue 2, p. 470.
7. Melkomjan S., Jekonomicheskaja i social'naja geografija Respubliki Armenija i Nagornogo Karabaha [Economical and social geography of Armenia and Nagorno-Karabakh], Yerevan, “Zangak97”,publ., 2005, p. 448.
8. Fomin G. S., Voda, kontrol' himicheskoj, bakterial'noj i radiacionnoj bezopasnosti po mezhdunarodnym standartam [Water. Control of chemical, bacterial and radiation safety according to international standards], Moscow, Jenciklopedicheskij spravochnik,publ., 2000, p. 370.
9. Standard methods for the examination of water and wastewater, 20th edition, USA, Edited by Lenore S. Clesceri, Arnold E. Greenberg, Andrew D. Eaton, 19981, 273, p. 52.
10. Ryboohrana, Sbornik normativnyh aktov [ Fish protection. Collection of normative acts], The Ministry of fisheries of the USSR, Moscow, Jurid. Lit,publ., 1988, p. 370.
11. Protasov V.F., Jekologija, zdorov'e i ohrana okruzhajushhej sredy v Rossii [Ecology, health and environment protection in Russia], Moscow, Finansy i statistika,publ., 2001, p. 672.
12. Nabljudatel'nye punkty kachestva i kolichestva vody v Armenii [ Observation posts of water quality and quantity of Armenia],Ministry of nature protection of the republic of Armenia], Yerevan, Service for Hydrometeorology and Environmental Monitoring, 2003, p. 20.

S.M. Musaeljan, A.B. Petrosjan Some aspects of the thermal regime of the Volgograd reservoir and its impact on the environment

Some aspects of the Volgograd reservoir thermal regime such as spring and autumn homothermy, temperature jump or metalimnion, water surface temperature change during the year are presented in the article. The reservoir effect on precipitation regime in the coastal area is showed. The reservoir effect on precipitation regime expresses in a fact that there is less precipitation over the water than on the land in the warm season. In the Volgograd reservoir conditions for years of observation there was on average 10% less precipitation over the water than on the land. Water surface area increasing led to the growth of relative and absolute air humidity. Near the Volgograd reservoir the increasing of absolute air humidity for 8-10 % is recorded at the distance of 4-6 km from the shore, and difference in the relative air humidity in a dry season increases to 15-20%. The establishment of the Volgograd reservoir led to the significant increase of wind speed and frequency. The wind speed over the reservoir in comparison with the speed over the land increased approximately in 1, 2 times; a breeze type of air appeared on the coastal area: at day it blows from the reservoir to the coast, at night – from the coast to the reservoir. The overregulation of the river Volga’s flow caused by the Volgograd reservoir made considerable changes in terms of incoming of autumn and spring ice phenomena.


Water supply

P.A. Grabovskii, N.A. GurinchikWater filtration through a granular layer with a constantly decreasing filtration rate

The mathematical model of water filtration through a granular layer with a constantly decreasing capacity was developed. The numerical solutions algorithm of filtration equations system tested on D.M. Minz well-known solutions for filtration cases with fixed capacity is obtained. Numerical investigations of filtration with the use of obtained model showed a close fit to the process physical representation.
References: 1. Kljachko V.A., Apel'cin I.Je. Ochistka prirodnyh vod [Treatment of natural waters, M., Strojizdat,publ., 1971, p. 579.
2. Hudson H.E. Declining rate filtration. AWWA. vol.51, №11, 1959, pp. 42-50.
3. Cleasby J.L. Water filtration through deep granular media. Public Works, №6,1970, pp.36-45.
4. Sysoev M.N., Kazakova L.P., Bogdanova S.I., Kruglov L.S. Rabota fil'trujushhih sooruzhenij s peremennoj skorost'ju [Work of filtring plants with variable-speed], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary technique],journ., №2, 1968, pp. 15-19.
5. Minc D. M. Teoreticheskie osnovy tehnologii ochistki vody [Theoretcial bases of water treatment technology], M., Strojizdat,publ., 1964, p. 156.
6. Venecianov E. V., Rubinshtejn R. N. Dinamika sorbcii iz zhidkih sred [Sorbtion dynamics from liquid medium], M., Nauka,publ., 1983, p. 237.
7. Olejnik A. Ja., Tugaj A. M. Modelirovanie processov kol'matazha i suffozii v prifil'trovoj zone skvazhiny [Modeling of the process of colmatage and suffusion in prefiltring well zone], report of the National Academy of Science of Ukraine, 2001, N 9, pp. 190–194.
8. Poljakov V. L. O fil'trovanii suspenzij pri zadannom napore [On suspesion filtering under given pressure], report of the National Academy of Science of Ukraine, 2005, N 4, pp. 48-54.
9. Ajerov M.Je., Todes O.M., Narinskij D.A. Apparaty so stacionarnym zernistym sloem [Devices with stationary granular bed], L., Himija,publ., 1979, p. 176.
10. Grabovskij P. O., Gurіnchik N.A. Chislennaja realizacija matematicheskoj modeli fil'tracii [Numerical implementation of the mathematical model of filtration], research and technology collection "Nauchnotehnicheskij sbornik «Problemy vodosnabzhenija, vodootvedenija i gidravliki" ["Problems of water supply, water disposal and hydrology"], issue 6, K. 2005, p. 413.
11. Mel'cer V.Z. Fil'troval'nye sooruzhenija v kommunal'nom vodosnabzhenii [Filtering plants in municipal water suppply], M., Strojizdat,publ., 1995, p. 176.

V.P. Kargapolcev, A.A. SidenkoVerification of water meters - "for" and "against"

The issue of housing water meters verification was observed. The replacement of water meters to the new ones after calibration interval completion is more advantageous for civilians rather than their verification; it is enough to carry out a compulsory verification for adjustment of equipment calibration interval in a limited extent by local bodies of Federal agency on technical regulation and metrology (Rostandart).
References: 1. L. Jurchuk «Obozhglis' na schetchike» [«Burn fngers on meter"], Rossijskaja 1. gazeta – Nedelja – Primorskij kraj», № 4714 from 24.07.08.
2. N. Brazhina «Jekonomija vody trebuet zhertv novyh rashodov» [There is a price for water economy], «Vladivostok»,newspaper, № 2292 from 19.02.08.
3. P. Olejnikov «Komu vygodna poverka kvartirnyh vodoschetchi kov» [Who benefits from verification of water meters], «Promyshlennye vedomosti»,newspaper, № 56, 2008.
4. GOST R 5123298 «Voda pit'evaja. Obshhie trebovanija k organiza cii i metodam kontrolja kachestva» [Drinking water. General requirements to organisation and methods of quality control].
5. PR 50.2.006. «Porjadok provedenija poverki sredstv izmerenij» [Arrangements for instrument calibration]

Wastewater treatment

I.G. SHaihiev, G.A. Minlegulova Industrial wastewater treatment by wastewater of other industries. Part 2. Wastewater treatment of electroplating industry.

Using wastewaters of one industry for wastewater treatment of another industry, the pollutants which are contended in the first wastewaters are chemical reagents for removal and neutralization of toxic admixtures of the second ones. In this case the process of wastewater treatment by different chemical and physical-chemical methods is replaced by simple wastewaters mixing, but surely in certain proportions. The electroplating wastes treatment is characterized by use of a large number of expensive reagents that makes a process economically inefficient. But in the same time the formation of acidic and alkaline wastewaters at electroplating industries makes their joint treatment more prospective. The article represents different examples of treatment by different industries wastewater mixing of chromiferous and cyano-containing electroplating wastewaters as well as wastewaters of electroplating and etching industries containing heavy metals ions.
References: 32. Treatment of waste waters of galvanic industries. Ital. Mach. and Equipment. 1980, vol. 12, № 5, pp. 58, 61.
33. Kuz'michkina V.S. Ispol'zovanie otrabotannyh travil'nyh rastvorov dlja ochistki promyshlennyh stochnyh vod [Use of waste pickle liquor for industrial waste water treatment], V.S. Kuz'michkina, G.I. Lomako, G.S. Petkevich, N.I. Michkevich, A.F. Pestrak. News of the Academy of Science of BSSR. Serija him. nauk, publ., 1984, № 5, pp. 97-101.
34. Author certificate 1813734 USSR, ICP C 02 F1/66. Sposob ochistki stochnyh vod ot hroma [Method of waste waters treatment from chrome], I.P. Golubnichij, K.N. NessisGorskaja, E.L. Kamenshhik; applicant and patent holder Zaporozhye electric apparatus plant «Preobrazovatel, № 4851603/26; declared 30.05.90; published 07.05.93.
35. Vasenin E.P. Primenenie travil'nyh rastvorov v processah ochistki hromsoderzhashhih stochnyh vod [Use of etch solutions in processes of chrome-containing waste waters treatment], E.P. Vasenin, A.G. Tarasov. Abstracts of the report of the region conference "Improvement of performance efficiency of water treatment and water disposal plants", Kujbyshev, 1990, pp. 21-22.
36. Titov A.P. Kaskadnyj metod obezvrezhivanija stochnyh vod gal'vanicheskih proizvodstv [Cascade method of electroplanting sewage sanitation], A.P. Titov, S.E. Krivega, G.P. Bespamjatnov. Investigation on detection of economic efficiency of science and research works and methods of wastes disinfection in organic synthesis production,collection of scientific works, Leningrad, 1976, pp. 94–97.
37. Author certificate 881004 USSR, ICP C 02 F 1/62. Sposob obezvrezhivanija stochnyh vod ot hroma [Method of waste water disinfection from chrome], A.P. Amarjan, V.D. Vasil'ev, A.A. Pirogov, S.M. Serdoteckij, I.Ju. Dynin, L.I. Gracershtejn, № 2718106/2926; declared 29.01.79; published 15.11.81.
38. Perelygin Ju.P. Obezvrezhivanie hromsoderzhashhih stochnyh vod gal'vanoproizvodstv othodami proizvodstva antibiotikov [Decontamintation of chorme-containing electroplanting waste waters by antibiotic waste products], Ju.P. Perelygin, O.E. Bezborodova, O.V. Zor'kina. Gal'vanotehnika i obrabotka poverhnosti [Electroplanting and surface treatment],journ., 2004, vol. 12, № 4, pp. 42-45.
39. Kim M.P. Ochistka hromsoderzhashhih i kislotnoshhelochnyh proizvodstvennyh stokov metodom jelektrokoaguljacii [Treatment of chrome-containing and acid-base industrial waters by method of electrocoagulation], M.P. Kim, T.I. Berestova, T.S. Davidovich. Voprosy ohrany vodnyh resursov v ugol'noj promyshlennosti [Issues of water resources protection in coal industry], collection of scientific works,Perm, 1983, pp. 69–77.
40. Patent 5119270 Japan, ICP C 02 S5/ 02. Udalenie kadmija i hroma iz stochnyh vod [Removal of cadmium and chrome from waste waters], Kato Isamu, № 4659162; declared 5.08.71; published 16.06.76.
41. Patent 814885 USSR, ICP C 02 F1/66. Sposob ochistki stochnyh vod gal'vanicheskih cehov [Method of treatment of electroplating plant waste waters], Ju.Ja. Budilovskij, S.Ja. Ryskin, D.Je. Slanksnene, V.B. Zhvirblis, M.A. Samajauskas; applicant and patent holder Vil'njusskoe proektnokonstruktorskoe bjuro mehanizacii i avtomatizacii [Vilniusian panning and design office of mechnization and automatization], № 2715544/2926; declared 23.01.79; published 23.03.81.
42. Zapol'skij A.K. Kompleksnaja pererabotka stochnyh vod gal'vanicheskogo proizvodstva [Complex processing of electroplanting waste waters], A.K. Zapol'skij, V.V. Obrazcov, Kiev, Tehnika,publ., 1989, p. 199.
43. Patent 3681210 USA, ICP В 01 J1/04; С 02 B1/42. Recovery of mixed plating rinses. J.F Zievers, C.J. Novotny; applicant and patent holder Industrial Filter and Pump Mfg Co. declared 08.04.71; published 01.08.72.
44. Young R.A. Waste treatment for a metal finishing plant / R.A. Young // Pollut. Eng. – 1976, № 9, pp. 40–41.
45. Trofimov V.N. Izvlechenie shestivalentnogo hroma i cinka iz vysokokoncentrirovannyh stochnyh vod [Removal of hexavalent chromium and zinc from high-strength wastes], V.N. Trofimov, B.M. Smirnov, I.N. Dronnikova. Fizikohimicheskaja ochistka promyshlennyh stochnyh vod i ih analogov [Physical-chemical treatment of industrial waste waters and their analogue], collection of scientific works, Moscow, 1986, pp. 33–36.
46. Kolesnikova A.S. Tehnologija ochistki stochnyh vod ot soedinenij hroma i svinca [Technology of waste waters treatment fro, compounds of chrome and lead], A.S. Kolesnikova, A.V. Podorozhkina. Problemy zheleznodorozhnogo transporta [Problem of railway transport],collection of scientific works, Far Eastern State Transport University, Khabarovsk, 1997, pp. 142-144, 162.
47. Zaripova A.G. Issledovanie ochistki hromsoderzhashhih gal'vanostokov OAO «KamAZ» shhelochnymi stochnymi vodami neftehimicheskih proizvodstv [Investigation of JSC "KamAZ" chrome-containing electroplanting wastes treatment by caustic wastewater of petrochemical production], A.G. Zaripova, I.G. Shajhiev, G.A. Minlegulova, G.Sh. Zaripov. Materials of the 3d science conference "Industrial ecology and safety], Kazan, 2008, pp. 60-62.
48. Safin R.S. Issledovanija po ochistke ot cianidov metodom smeshenija ciani hrom (VI)soderzhashhih stochnyh vod mashinostroitel'nyh predprijatij [Investigation on cyanide removal by method of mixture of cyanide and chrome-containig waste waters of machine-building enterprises], R.S. Safin, F.I. Churikov. Sposoby ochistki i ochistnye sooruzhenija dlja promyshlennyh stochnyh vod [Methods of treatment and treatment plants for industrial waste waters],international thematic collection of works, Saint-Petersburg State University of Architecture and Civil Engineering, Leningrad, 1987, pp. 33–40.
49. Coleman A.K. Utilisation of waste chrome liquors for the treatment of waste cyanide / A.K. Coleman // Effluent and water treat. 1968, № 1, pp. 267-271.
50. Cochran A.A. The wastepluswaste process for recovering metals from electroplating and other wastes. / A.A. Cochran, L.C. George // Plat. and surface finish. – 1976, vol. 63, № 7, pp. 38–43.
51. Rose B.F. Chlorine conguers cadmium . B.F. Rose. Ind. finish. 1979, vol. 55, № 3, pp. 32–34.
52. Kurolap N.S. Ionoobmennaja ustanovka ochistki promstokov gal'vanicheskogo proizvodstva [Ion-exchanging plant of industrial waste water treatment of electroplanting production], N.S. Kurolap, Je.G. Teterina, V.P. Severgina. Materials of the seminar "Treatment of industrial waste waters and machine industry sludge utilization], Moscow, 1988, pp. 75-80.
53. Author certificate 1159897 USSR, IPC C 02 F1/58. Sposob izvlechenija medi iz rastvorov [Method of copper removal from solutions], N.I. Suhockaja, M.A. Maksimov, G.A. Bulgakova, № 3561360/2326; declared 28.02.83; published 07.06.85.
54. Maksin V.I. Osazhdenie osnovnyh solej medi pri vzaimodejstvii shhelochnyh i kislyh travil'nyh rastvorov [Sedimintation of cooper basic salts when interacting with alkaline and acid etching solution], V.I. Maksin and others. Himija i tehnologija vody [Water chemistry and technology],journ., 1990, № 3, pp. 219-221.
55. Maksin V.I. Osazhdenie gidroksidov i gidroksokarbonatov zheleza, nikelja i medi iz stochnyh vod i tehnologicheskih rastvorov [Sedimintation of hydroxides and hydroxo-carbonates of iron, nickel and cooper from waste waters and process solutions], V.I. Maksin, E.A. Valujskaja. Himija i tehnologija vody [Water chemistry and technology],journ., 1989, № 1, pp. 12-25.
56. Author certificate 1749326 USSR, IPC C 02 F1/62. Sposob ochistki otrabotannyh shhelochnyh mednohloridnyh travil'nyh rastvorov [Method of treatment of waste alkaline cooper-chloride etching solutions], V.M. Rogov, N.M. Korchik, T.F. Stepanjuk; applicant and patent holder Ukrainskij institut inzhenerov vodnogo hozjajstva [Ukraine institute of hydraulic engineers], № 4708882/26; declared 20.03.89; published 15.06.92.
57. Application 2283866 France, ICP C 02 S1/40. Procede etinstallation d”epuration des eauh residueires des fraitements de surface par voie chimijaue. A. Askienazy, V. Ken, JC. Masson. № 7430465; declared 9.09.1974; published 2.04.1976.
58. Author cerificate 1439088 USSR, ICP C 02 F1/62. Sposob ochistki stochnyh vod, soderzhashhih ammiak, ot medi [Method of ammonia-containing waste waters treatment from cooper], Ju.A. Kovalenko, V.V. Otletov, R.S. Bondarcova; applicant and patent holder Far East department of Reserch and science institute "VODGEO" and Far East plant «Radiopribor», № 40327176/2326; declared 20.12.85; published 23.11.88.
59. Author cerificate 861334 USSR, ICP C 02 F1/58. Sposob ochistki stochnyh vod, soderzhashhih lakokrasochnye zagrjaznenija [Method of treatment of waste waters containing paint pollutants], B.A. Mitin, E.G. Rezo, V.A. Savchenko, V.A. Stezhko, E.A. Ureckij; applicant and patent holder Brestkij inzhenernostroitel'nyj institut [Brest institute of engineering and construction] and Brest electromechanical plant, № 2656309/2926; declared 21.08.78; published 07.09.81.
60. Kuznecov S.O. Sposoby i sredstva ochistki stochnyh vod ot nefteproduktov [Methods and means of waste waters treatment from oil products], S.O. Kuznecov, E.N. Ol'hov. Jekologija promyshlennogo proizvodstva,journ.,1994, № 1, pp. 27-37.
61. Shajhiev I.G. Issledovanie ochistki metallosoderzhashhih gal'vanicheskih stokov proizvodstva OAO «KamAZ» shhelochnymi stokami neftehimicheskih proizvodstv [ Investigation of metal-containing electroplanting waste waters of JSC "KamAZ" by alkaline waste waters of petrochemical production], I.G. Shajhiev, A.G. Zaripova, G.Sh. Zaripov. Vestnik mashinostroenija,journ., 2007, № 11, pp. 72-73.
62. Shajhiev I.G. Issledovanie ochistki zhelezosoderzhashhih stokov stochnymi vodami neftehimicheskih proizvodstv [Investigation of treatment of iron-containing waste waters by waters of petrochemical production], I.G. Shajhiev, O.G. Zhelnovach, S.V. Fridland. Abstracts of the report of the 7th Republican conference "Pressing ecological problems of the republic of Tatarstan", Kazan, 2007, pp. 224-225.
63. Shajhiev I.G. Ochistka gal'vanostokov sul'fidsoderzhashhimi stochnymi vodami neftehimicheskih proizvodstv [Treatment of electroplanting waste waters by sulfide-containing waters of petrochemical production], I.G. Shajhiev, O.G. Zhelnovach, R.M. Zaripov, N.V. Zubrilova. Jekologija i promyshlennost' Rossii,journ., 2008, № 6, pp. 14-15.
64. Shapkin N.P. Jeffektivnost' ochistki stochnyh vod [Efficiency of waste waters treatment], N.P. Shapkin, N.N. Zhamskaja, N.V. Maslova, I.V. But. Works of the international forum on problems of science, technology and education, M., Izdvo AN o Zemle,publ., 2003, vol.2, vol. 128–129.
65. Zhamskaja N.N. Ispol'zovaniem vozmozhnostej ochistki gal'vanostokov s ispol'zovaniem osaditelej organicheskogo haraktera [Using the capabilities of the electroplatings wastes treatment by using organic precipitants] N.N. Zhamskaja, E.A. Tapashkevich, N.P. Shapkin, N.B. Kondrikov, E.Ju. Gadechko. Abstract of the report of the 3d All-Russian science and practice conference with the international participation "New in ecology and life safety], Saint-Petersburg, Saint-Petersburg State University,publ., 1998, p. 293.
66. Zhamskaja N.N. Ochistka stochnyh vod gal'vanicheskih i pishhevyh predprijatij [Treatment of waste waters of electroplating and food enterprises], N.N. Zhamskaja, L.S. Bjankina, S.V. Malkova, Vladivostok, Dal'nevostochnyj gosudarstvennyj tehnicheskij rybohozjajstvennyj universitet [Far East State Technical University of Fishery], 2006, p. 97.

I. A. Nechaev, L.V. GandurinaStatus and prospects of flocculants use for coagulation wastewater treatment intensification. Part 1. The use of flocculants along with inorganic coagulants

The advantages and features of joint application of flocculants and coagulants for wastewater treatment are listed. The data of reagent optimal dose and its effect in wastewater treatment of different composition are represented. It is showed that the joint applications with coagulant the high-molecular low-charged non-ionic and weakly anionic flocculants are most efficient. As a rule the process of flakes consolidation by adding flocculants is carried out by bridging mechanism and depends on flocculant molecular mass rather than on its charge. During the treatment of multicomponent wastewaters flocculants play a leading role and by controlling a dose and choosing a flocculant type the efficiency of wastewater treatment with its joint application with coagulant can be significantly increased. In this case, the composition of dissolved admixtures in choosing flocculants and their doses have a first-rate importance.
References: 1. Babenkov E.D. Ochistka vody koaguljantami [Water treatment by coagulants], M., Nauka,publ., 1977, p. 355.
2. Yu Jianfeng, Wang Dongsheng, Ge Xiaopeng, Yan Mingquan. Yang Min. Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures// Cоlloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, vol. 290, Issue 13, № 10, p. 288.
3. Gandurina L.V., Poljakov A.M., Nechaev I.A., Bogateev I.A., Tychinskij O.Ju., Deberdeev H.Je. Ochistka neftesoderzhashhih stochnyh vod s primeneniem dezinficirujushhih polimerov [Treatment of oil containing waste waters with the use of disinfectant polymers], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary technique],journ., 2008, №1, p. 28.
4. Getmancev S.V., Nechaev I.A., Gandurina L.V. Ochistka proizvodstvennyh stochnyh vod koaguljantami i flokuljantami [Industrial waste waters treatment with coagulants and floculants], M., ASV,publ., 2008, p. 285.
5. Buceva L.N., Gandurina L.V., Kerin A.S., Shtondina V.S., Chernjak V.D., Judin V.G. Ochistka stochnyh vod i obezvozhivanie osadka obojnyh fabrik [Waste water treatment and wallpaper factory sludge dewatering], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary technique],journ., 1998, № 8, p. 27.
6. Mjasnikov I.N., Potanina V.A., Demin N.I., Leonov Ju.M., Popov V.A. Ochistka neftesoderzhashhih stochnyh vod s primeneniem reagentov [Treatment of oil-contining waste waters with the use of reagents], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary technique],journ., 1999, № 1, p. 8.
7. Avdeeva Je.I., Karimova A.M., Grojsman E.B., Balueva I.V., Cykina N.M. Sovershenstvovanie tehnologii reagentnoj obrabotki obezzhirennyh stochnyh vod fabrik pervichnoj obrabotki shersti [Improvement of the technology of reagent treatment of factory of primary wool processing factory fat-free waste waters], Voda: jekologija i tehnologija [Water: ecology and technology],abstractes of the 6th International congress, M., 200, p. 738.
8. Gandurina L.V., Buceva L.N., Shtondina V.S., Menshutin Ju.A., Fomicheva E.V., Voronov V.I. Intensifikacija ochistki promyshlennolivnevyh vod na Ugreshskih ochistnyh sooruzhenijah [Intensification of industrial waste waters treatment at Ugreshskie treatment plant], Vodosnabzhenie i sanitarnaja tehnika [Water supply and sanitary technique],journ., 2004, № 5, p. 17.
9. Gandurina L.V. Flokuljacionnye tehnologii ochistki stochnyh vod ot nefteproduktov// Inzhenernoe obespechenie ob#ektov stroitel'stva: Obzornaja informacija [Floculation technology of waste waters treatment from oil products. Engineering support of construction projects:survey information], VNIINTPI, M., 2004, issue 3, 49, p. 41.
10.Kavjuk V. A. Pererabotka zhidkih othodov proizvodstva akrilovyh polimerov [Processing of liquid wastes of acrylic polimer production plants], dissertation of the candidate of technical science, M., 1988, p. 289.
11. Gandurina L.V. Ochistka stochnyh vod s primeneniem sinteticheskih flokuljantov [Waste waters treatment with the use of synthetic flocculants], M., DAR VODGEO, 2007, p. 198.

E. S. Shirinkina, I. S. Glushankova, N.G. Osipenko The modernization of wastewater treatment technology of titano- magnesium production

The article represents the investigations of processes of titano-magnesium production wastewaters development and treatment. The regularities of different brand flocculants dosing effect on process of suspended materials precipitation in wastewaters are investigated. The optimal flocculant dose is defined. The analysis of sludge dewatering technology is carried out. The optimal technological parameters of centrifuge work are defined. The technology of centrifuge effluent tertiary treatments with obtaining of circulated waste water – permeate and salt concentrates which can be used as a deicing agent. According to reference data the melting capacity of obtained deicing agent is calculated.
References: 1. Afanas'ev I.A. Zimnee soderzhanie ulic i dorog naselennyh 1. mest Zapadnogo Urala [Winter management of streets and roads of the Western Ural populated localities], I.A Afanas'ev., A.V Jedel'man., L.I. Afanas'eva, Perm, Perm State Technical University,publ., 2006, p. 71.
2. Mal'shin V.M. Metallurgija titana [Titanium metallurgy], V.M. Mal'shin, V.N. Zavadovskaja, N.A. Pampushko, textbook for students of technical schools, M., Metallurgija,journ., 1991, p. 208.
3. Rodionov A.I. Tehnologicheskie processy jekologicheskoj bezopasnosti [Technological processes of ecological safety], A.I. Rodionov, V.N. Klushin, V.G. Sister, Kaluga, Izdatel'stvo N. Bochkorevoj,publ., 2000, p. 800.
4. Sister V.G. Inzhenernojekologicheskaja zashhita vodnoj sistemy severnogo megapolisa v zimnij period [Engineering environment protection of water system of the northen big cities during winter], V.G. Sister V.G., V.E. Koreckij, M., 2004, p. 158.
5. Tarasov A.V. Metallurgija titana [Titanium metallurgy],A.V. Tarasov, M., Engineering Consulting Center «Akademkniga», 2003, p. 328.
6. Timonin A.S. Inzhenernojekologicheskij spravochnik [Environmental engineering handbook], A.S. Timonin, vol.2, Kaluga, Izdatel'stvo N. Bochkarevoj,publ., 2003, p. 884.

V. G. Voskonjan, A. V. VoskonjanTreatment of surface wastewaters by using mussel aquaculture

The self-cleaning function of water reservoirs from pollution of surface wastewaters are best performed by mussels. The most efficient of mussel’s species are bivalve mollusks: mussels, long-necked clams and oyster and others as well as epischura baikalensis which provides cleaning of the lake Baikal. The most assessable mollusks for the surface waters biotreatment are mussels. Mussels are stenophagous and eat organic particles suspended in the water in a large amount among which the most significant for their food is a microalga that is a phytoplankton. It is necessary to organize settling ponds and settle them with mollusks because mussels play role of a biofilter and provide the increasing of treatment quality. It is necessary for mussels to grow in the special mussel’s cells in a water reservoir to put the biofilter on work.
References: 1. Voskon'jan V.G. Zdorov'e morja [Sea health], Fundamental'nye issledovanija [Fundamental research],journ., 2005, № 9, p. 108.


K.G. Pugin, N.E. Kuropova Reducing the environmental pressure on water bodies at placing no recycled waste of ironworks

The issues associated with investigation of environmental load in surface stream flow influenced by wastewaters of ironworks enterprises ash disposal areas and dust storehouses are observed. The recommendation for environmental load decreasing by using slag and dust are listed; description of impermeable screen model which enables to increase the impervious effect and sorption capacity for soil and underground waters pollution prevention by toxic chemicals was described.
References: 1. Verihov B.V. Gigienicheskaja ocenka himicheskogo tehnogennogo vozdejstvija na sostojanie kostnomyshechnoj sistemy u detej v promyshlennyh gorodah Permskoj oblasti [Hygienic assessment of chemical anthropogenic impact on children musculoskeletal system state of industrial towns of the Perm Refion], synopsis of the thesis of the candidate of medical science, Perm, 2007, p. 18.
2. Maksimovich N.G., Blinov S.M., Men'shikova E.A. Vozdejstvie tverdyh othodov Chusovskogo metallurgicheskogo zavoda na sostojanie r. Chusovoj [Impact of hard wastes of the Chusovoy metallurgical plant on the Chusovoy river state], "Problems of geology and Perm Urals and Transurals" materials of the regional scientific conference, Perm State University, Perm, 1998, pp. 152-154.

M.M.Asadov, M.M.TalybovKinetic conditions of salt formation in the system of aqueous solution of salt - inhibitor

In the frames of phenomenological model in the solution system containing inorganic salt-inhibitor of salt formation the process of crystal growth inhabitation with regard to speed kinetics of two-dimensional germs formation was investigated. The case of inhibitor particle diffusion across the surface and with their subsequent adsorption on the sides of growing crystal was observed. The main parameters of this process which are critical radius of two-dimensional germ, relative saturation of the solution and level rate of surface coating were researched. The process regularities of crystal structural unit integration into the growth step, rate of salt crystallization dependence on relative saturation of the solution as well as critical inhibitor concentration dependence on temperature were defined.
References: 1. Kubota N. Effect of impurities on the growth kinetics of crystals. Crystal Research and Technology, 2001, № 8/10, pp.749–769.
2. Garrels R.M., Krajst Ch.L. Rastvory, mineraly, ravnovesija [Solutions, minerals, balances], M., Mir,publ., 1968, p. 368.