Archive logs by year



Introduction: The provision of drinking water standards for biologically active and biogenic components of groundwater (boron, bromides, fluorine, ammonium) in a number of regions of Russia is an urgent problem, the solution of which requires the selection and justification of water treatment technology. Purpose: To develop a technology for conditioning groundwater containing iron, boron and bromine. Results: Studies of deironing, de-icing and debromination in the underground water of the Chumlyakskoye field were carried out. It was found that with the content of iron in the initial water up to 2.16 mg/l and ammonium ions up to 3.2 mg/l at the outlet from the bioreactors and floating load filters, the purification efficiency according to these indices is 91.2 and 34%. Subsequent treatment of de-iron water on the models of filters of the first and second stages with the ion exchange resin Purolite S-108 and AV-17-8 accordingly allows to provide the standards for boron and bromides at their concentration in groundwater of 1.8 and 0.43 mg/l. Practical relevance: The developed technology can be used in the practice of preparing water for the purposes of domestic and drinking water supply, subject to pre-project testing in each particular case.
Key words: Groundwater, Research, Technology, Water Treatment, Removal of Iron, Bioreactor, Removing of Boron, Debromination.
References: 1. Zhurba, M. G., Govorova, Zh. M. (2010), Vodosnabzhenie. Tom 2. Uluchshenie kachestva vody [Water Supply. Volume 2. Improving the Quality of Water], Izdatel'stvo ASV. M., p. 544 (in Russian). 2. Pit'evaja voda. Gigienicheskie trebovanija k kachestvu vody centralizovannyh sistem pit'evogo vodosnabzhenija. Kontrol' kachestva. Sanitarno-jepidemiologicheskie pravila i normativy [Drinking Water. Hygienic Requirements for Water Quality of Centralized Drinking Water Supply Systems. Quality Control. Sanitary-Epidemiological rules and Regulations]. (2012), Federal'nyj centr gossanjepidnadzora Minzdrava Rossii. M., p. 103 (in Russian). 3. Govorova, Zh. M., Zhurba, M. G. (2012), Obosnovanie vodoochistnyh tehnologij i ih investirovanija: Nauchnoe izdanie [Justification of Water Treatment Technologies and their Investment.]. M., p. 176 (in Russian). 4. Ivleva, G. A., Kozina, A. K., Rodina, I. S., Merkulova, L. I., Koljadkina, G. S., Kandybina, G. M. (2004), «Purification of Natural Waters from Biologically Active Components - Boron and Bromine», Ochistka i kondicionirovanie prirodnyh vod: NII VODGEO, no. 5, pp. 26–32 (in Russian). 5. Alekseev, L. S., Al'-Amri, Z., Ivleva, G. A. (2012), «Purification of Groundwater for Drinking Purposes from Boron», C.O.K. Plumbing , Heating and Air Conditioning, no. 3, pp. 20–22 (in Russian). 6. Tarasova, N. P., Ivanova, S. A., Naumov, V. N., Kuznecov, V. A., Zajcev, V. A. (2013), «The Treatment of Groundwater from Boron Compounds», Industrial ecology, no. 1, pp. 29–32 (in Russian). 7. Ivleva, G. A., Alekseev, L. S. (2007), «Barrier Functions of Ground Water Treatment technologies for Domestic Purposes», Water supply and sanitary techniques, no. 9, part 2, pp. 33–38 (in Russian). 8. Pervov, A. G., Andrianov, A. P., Jurchevskij, E. B., Spicov, D. V., Efremov, R. V., Rudakova, L. V. (2009), «Container Mounted Water Treatment Plants for Water Supply of Small Communities», Water supply and sanitary techniques, no. 7, pp. 40–46 (in Russian). 9. Zhurba, M. G. (2011), Vodoochistnye fil'try s plavayushchei zagruzkoi [Water treatment filters with moving bed. Scientific publication]. M., p. 536 (in Russian). 10. Zhurba, M. G., Govorova, Zh. M., Kvartenko, A. N., Govorov, О. B. (2006), «Biological Deferrization and Demanganization of Ground Water», Water supply and sanitarytechniques, no. 9, part 2, pp. 17–23 (in Russian). 11. Zhurba, M. G., Govorov, O. B., Govorova, Zh. M., Kvartenko, A. N. (2012), «Moving Bed Bioreactor-Filters in Groundwater Conditioning Technology», Santecfinika, no. 3, pp. 50–54 (in Russian).


Introduction: The main influence determining the intensity of eutrophic water bodies is the intake of nutrient elements - nitrogen and phosphorus - into the water bodies with discharged sewage. One of the forms of phosphorus retention during wastewater treatment is reagent phosphorus retention during shipment in primary settling tanks. In this case, the most significant (target) indicator of primary settling tanks is the efficiency of phosphorus removal. The data were provided by the State Unitary Enterprise "Vodokanal of Saint Petersburg" on the basis of the operation of primary sedimentation tanks of the North Station for 2014–2015. Purpose: Determination of the required dose of the reagent upon coprecipitation of phosphorus in primary sedimentation tanks. Determination of the efficiency of primary settling tanks in the regime of reagent coprecipitation of phosphorus. Results: The effect of the administered dose of the reagent on the phosphorus removal efficiency of phosphate and the clarification process of wastewater have been determined. Studies have shown that the reagent treatment of wastewater in primary sedimentation tanks with reduced doses increases the cleaning effect of suspended substances by 15–20% (compared to non-reactive settling) and proportionally increases the removal of COD, BOD5, total nitrogen and total phosphorus. The binding of orthophosphates allows, at the stage of biological treatment, to bring the phosphorus phosphate concentrations to 0.1–0.2 mg / l. The resulting solid impurities of aluminates accumulate in the active sludge, which is a favorable environment for the development of nitrifying bacteria and promote deep nitrification. A mathematical model has been developed that allows to calculate the dose of reagent for the removal of phosphorus phosphate for primary sedimentation tanks and take into account its effect on the clarification effect. Practical relevance: Determination of the required dose of the reagent upon coprecipitation of phosphorus in primary sedimentation tanks. Determination of the efficiency of primary settling tanks in the regime of reagent coprecipitation of phosphorus.
Key words: Reagent Phosphorus Removal, Reagent Dosage, Primary Clarifier, Effect of Sedimentation
References: 1.(2015), ITS 10-2015: Ochistka stochnyh vod s ispol'zovaniem centralizovannyh sistem vodootvedenija poselenij, gorodskih okrugov [Wastewater Treatment Using Centralized Sewerage Systems for Settlements, Urban Districts], Federal'noe agentstvo po tehnicheskomu regulirovaniju i metrologii ITS 10-2015, Bjuro NDT, M., p. 377 (in Russian). 2.(2007), Degremont. Tehnicheskij spravochnik po obrabotke vody. Tom 2 [Degremont. Technical Reference Book on Water Processing. Vol. 2], Novyj zhurnal, Saint-Petersburg, p. 921 (in Russian). 3.(1999), "Convention for the Protection of the Natural Marine Environment of the Baltic sea area", Available at: (accessed 09 March 2017). 4.(2016), «Ob utverzhdenii normativov kachestva vody vodnyh ob’ektov rybohozjajstvennogo znachenija, v tom chisle normativov predel'no dopustimyh koncentracij vrednyh veshhestv v vodah vodnyh ob’ektov rybohozjajstvennogo znachenija» [On the Approval of Water Quality Standards for Water Bodies of Fishery Importance, Including Standards for Maximum Permissible Concentrations of Harmful Substances in the Waters of Water Bodies of Fishery Importance], Prikaz Ministerstva sel'skogo hozjajstva Rossijskoj Federacii ot 13.12.2016 g. № 552 [Order of the Ministry of Agriculture of the Russian Federation of December 13, 2016 No. 552]. Available at: (accessed 09 March 2017) (in Russian). 5. Voronov, Ju. V., Jakovlev, S. V. (2006), Vodootvedenie i ochistka stochnyh vod. Uchebnik dlja vuzov po spec."Vodosnabzhenie i vodootvedenie" [Wastewater and Wastewater treatment. Textbook for Universities on Special "Water Supply and Sanitation"], Izdatel'stvo ASV, M., p. 704 (in Russian). 6. Lucenko, G. N., Cvetkova, A. I., Sverdlov, N. Sh. (1984), Fiziko-himicheskaja ochistka gorodskih stochnyh vod [Physical and chemical treatment of municipal wastewater], Strojizdat, M., p. 88 (in Russian). 7. Federal'noe agentstvo po tehnicheskomu regulirovaniju i metrologii, (2012), SP 32.13330.2012: Kanalizacija. Naruzhnye seti i sooruzhenija. Aktualizirovannaja redakcija. SNiP 2.04.02–84*, Rosstandart (in Russian). 8. Karttunen, Je., (2005), Vodosnabzhenie II [Water Supply II], Novyj zhurnal, Saint-Petersburg, p. 688 (in Russian). 9. Solov'eva, E. A. (2011), Udalenie azota i fosfora iz gorodskih stochnyh vod. AP Lambert, Academic Publishing GbmH, Germany (in Russian). 10. Mishukov, B. G., Solov'eva, E. A., (2014), Glubokaja ochistka gorodskih stochnyh vod [Deep cleaning of urban wastewater], Saint-Petersburg, SPbGASU (in Russian). 11. Karmazinov, F. V. (ed.) (2002), Otvedenie i ochistka stochnyh vod Sankt-Peterburga [Displosal and Treatment of Sewage in Saint-Petersburg], Novyj zhurnal, Saint-Petersburg, p. 683 (in Russian). 12. Karmazinov, F. V. (ed.) (2008), Vodosnabzhenie i vodootvedenie v Sankt-Peterburge [Water supply and water disposal in St. Petersburg], Novyj zhurnal, Saint-Petersburg, p. 464 (in Russian). 13. Kinebas, A. K., Nefedova, E. D., Rublevskaja, O. N., Pankova, G. A., Pirogov A. G., Popova, N. I., Klimenko, A. I. (2011), «Opyt vnedrenija tehnologii himicheskogo udalenija fosfora: ot laboratornyh testov do promyshlennoj jekspluatacii» [Experience in introducing the technology of chemical phosphorus removal: from laboratory tests to industrial operation], Vodosnabzhenie i sanitarnaja tehnika, no.1, pp. 46–54 (in Russian). 14. Hence, M., Armojes, P., Lja-Kur-Jansen, J., Arvan, Je. (2004), Ochistka stochnyh vod. Biologicheskie i himicheskie processy [Wastewater Treatment. Biological and Chemical Processes.], Translated by Mosolova, T. P., Mir, M., p. 480 (in Russian). 15. Longdong, Y. (2013), Ochistka stochnykh vod. Programma povysheniya kvalifi katsii v oblasti vodnogo khozyaystva i okhrany okruzhayushchey sredy [Sewage Treatment. Advanced Sewage Treatment. Advanced Training in water Management and Environmental Protection], Novyy zhurnal, Saint-Petersburg, 483 p. 16. Mishukov, B. G. (ed.), (2014), Kurs lekcij [Lecture Course], SPbGASU, Saint-Petersburg, p. 196 (in Russian). 17. (2009), Leitfaden zur Verminderung des Phosphoreintrags aus Kläranlagen [Guideline for the Reduction of Phosphorus Input from Wastewater Treatment Plants], Available at: (accessed: 15.03.2017).

Ignatchik C. Y., Kuznetsov P. N. ESTIMATING METHODS AND WAYS OF REDUCING WASTE WATER DECREASE IN THE ENVIRONMENT Part 1. Assessment methods and ways of reducing wastewater discharges when clogging or accidents at drainage network sites

Introduction: due to increased ecological requirements it is important to consider and prove actions, allowing to carry out water disposal without dumping of sewage into the environment. Purpose: The development of estimating methods of wastewater dumping for different reasons. Results: to assess the volume of wastewater discharges due to the excess of sewage inflow over the supply of sewage pumping stations as a result of emergency shutdown of pumps or receipt of waste water, a probabilistic-statistical method for assessing the risk and volume of accidental discharge of sewage into the environment. In the conditions of regulating their inflow or operation of the supply manifold in the pressure regime. It differs from the existing ones in that the experimental function of the distribution density of a random inflow is used as a characteristic of the wastewater disposal area, the experimental function of the distribution density of its supply is used to qualitatively char-acterizing the district pumping station, the risk and volume of emergency discharges are estimated taking into account the values of free. Regulating volume in the sewerage network. The estimation of wastewater discharges due to excess of sewage inflow over the capacity of network sections, as a result, of the receipt of an unaccountable wastewater discharge can be carried out by carrying out hydraulic calculation of the network sections, using actual intensities and rain durations as initial data. Practical relevance: the methodology advantages are illustrated by the example of the evalua-tion of the influence of pipe clogging on the need for labor resources and mechanisms for the ex-serviced network RKS-1 in Moscow. It has been established with a confidence probability of 0.95, the emergency discharge of untreated sewage into the environment will not exceed 8.7% of the an-nual inflow. To provide these probabilistic and technological indicators of reliability, safety of the water disposal network, the annual unscheduled need for labor resources is 26,700 people per hour.
Key words: Drainage System, Sewage Pumping Stations, Wastewater, Reliability, Surface Run-off, Emergency Reset, Maintainability.
References: 1. (2011). Russian Federation. The federal law of 07.12.2011 No. 416-FL "About water supply and water disposal" (In Russian). 2. Ignatchik, S. Yu. (2010). «Ensuring of Reliability and Power Saving When Designing the Facilities or Wastewater Transporting», Water Supply and Sanitary Technique, no. 4, pp. 56-62 (In Russian). 3. Ignatchik, S. Yu. (2013). «Methodology of Estimation of the Influence of Pipes Chok-ing on Reliability and Ecological Safety during Exploitation of Water Disposal Network», Vodoo-chistka, no. 2, pp. 33-41 (In Russian). 4. Karmazinov, F. V., Melnik, E. A., Probirsky, M. D., Il’in, Yu. A., Ignatchik, V. S., Ignatchik, S. Yu. (2011). «Influence of Tear-and-Wear of Vertical Pumps on Reliability, Safety and Power Consumption of Sewerage Pumping Stations», Water Supply and Sanitary Technique, no. 4, pp. 10-18 (In Russian). 5. Karmazinov, F. V., Mel'nik, E. A., Probirsky, M. D., Pankova, G. A., Mikhailov, D. M., Ilyin, Yu. A., Ignatchik, V. S., Ignatchik S. Yu. «Technical inspection of sewage pumping stations in Saint-Petersburg», Water Supply and Sanitary Technique, no. 1, pp. 20-27 (In Russian). 6. Ignatchik, V. S., Ivanovskii, V. S.,Ignatchik, S. Yu., Kuztetsova, N. V. (2015), Sistema dlya opredeleniya pokazateley nadezhnosti i bespereboynosti setey vodosnabzheniya i vodootvedeniya [System for Determining Reliability and Continuity of Water Supply and Sewerage Networks], RU, Patent № 2557486. 7. Ignatchik, V. S., Ivanovskii, V. S.,Ignatchik, S. Yu., Kuztetsova, N. V. (2016), Sposob otsenki nadezhnosti nasosnoy stantsii [Method for Assessing the Reliability of a Pumping Station], RU, Patent № 2602295. 8. Ignatchik, V. S., Ignatchik, S. Yu., Kuznetsova, N. V., Grinev, A. P. (2015). «Type Jus-tification of Settlement Model for Assessment of Reliability of Sewer Pump Stations of All-Floatable Systems of Water Disposal», Vodoochistka, no. 9, pp. 25-31 (In Russian). 9. Ignatchik, V. S., Ivanovskii, V. S.,Ignatchik, S. Yu., Kuztetsova, N. V. (2015), Sistema diagnostiki raskhoda vody [Water Flow Diagnostic System], RU, Patent № 2557349. 10. Karmazinov, F. V., Probirsky, M. D., Ignatchik, V. S., (2016), Sistema diagnostiki pritoka vody [Water Inflow Diagnostic System], RU, Patent № 2596029. 11. Ignatchik, V. S., Ivanovskii, V. S., Ignatchik, S. Yu., Kuztetsova, N. V., (2016) Sistema otsenki sbrosov stochnykh vod v okruzhayushchuyu sredu [The system for Assessing the Discharge of Waste Water into the Environment], RU, Patent № 2599331. 12. Karmazinov, F. V., Pankova, G. A., Mikhailov, D. M., Kurganov, Yu. A., Murashev, S. V., Ignatchik, V. S., Ignatchik, S. Yu., Kuztetsova, N. V., (2017), Sistema dlya otsenki i prognozi-rovaniya sbrosov stochnykh vod [The System for the Assessment and Prediction of Wastewater Discharges], RU, Patent № 2606039. 13. Karmazinov F. V., Pankova G. A., Mikhailov D. M., Ignatchik V. S., Ignatchik S. Yu., Kuznetsova N. V. (2016). «Method of Evaluating the amount of Emergency Wastewater Discharges into the Environment», Water Supply and Sanitary Technique, no. 6, pp. 49-54 (In Russian). 14. Ignatchik, S. Yu., Kuznetsova, N. V. (2014). «Methodology of study and Optimization of Solutions during Reconstruction of Sewage Pumping Stations (by the example of Sewage Pump-ing station Washing of the system of Water Disposal of Saint - Petersburg)», Vodoochistka, no. 1, pp. 43-48 (In Russian). 15.(2015). Russian Federation. The federal law Russian Federation of 10.01.2002 (in ed. of 29.12.2015) No. 7- FL "About Environmental Protection" (In Russian).


Introduction: Abroad the problem of reduction of the intensity of microbiological corrosion of the sewage networks is partly solved by the use of stand pipes with vortex flow. However, the use of such structures in the sewerage system of St. Petersburg is impossible due todesign disadvantages, which can lead toplugging of the stand pipe and accidents on the network. In Russia the construction of the stand pipe made of cast iron and enclosed in concrete case is often used, and this stand pipe is the centerof the deterioration process. The use of polyethylene pipes as drop stand pipes can be a perspective way forsolution of the problem.Tosubstantiate the possibility of theiruse in such crucial facilities, it is necessary toevaluate the strength characteristics of polyethylene pipelines, depending on the flow rate of the liquid. Purpose: Development of a multidisciplinary model of functioning of a real drop stand pipe that allows tocalculate the hydrodynamic regime and toassess the effect of loads from the falling stream. Results: As the result of simulation the dependences of the flow velocity at the outlet of the stand pipe and the pressure at the inlet funnel and at the stilling basin on the waterflow rate are given. Toassess the strength characteristics of the stand pipe the dependences of the equivalent stress on the sewage flow rate are obtained. The fact of polyethylene stand pipe exposure todeformation resulting from the movement of the stream is proved. A comparison of the values of the equivalent stresses with allowable stresses forpolyethylene pipes is carried out. The possibility of using polyethylene pipes with specified wall thickness as the stand pipes in drop shafts is vindicated. Practical relevance: The use of polyethylene pipes allows toexclude the possibility of destruction of the stand pipe and toslow the corrosion process in the drop shaft.
Key words: Keywords: Shaft, Stand Pipe, Drop, Drop Shaft, Drop Pipe, Simulation of Sewerage Facilities, Hydrodynamic Impact.
References: 1. Aisaev, A. A. (1999), Otvedenie i ochistka stochnykh vod Sankt-Peterburga [Wastewater Disposal and Treatment in Saint Petersburg], Stroyizdat St. Petersburg. Saint Petersburg., p. 424 (in Russian). 2. Rozental, N. K. (2007), «Corrosion and Protection of Concrete and Reinforced Concrete Structures of Wastewater Treatment Plants», Concrete and reinforced concrete, no. 1, pp. 96–103 (in Russian). 3. Zhang, L. (2008), «Chemical and Biological Technologies for Hydrogen Sulphide Emission Control in Sewer Systems: A review», Water Research, no. 42, pp. 1–12. 4. Wells, P., Melchers, R. (2009), «Factors Involved in the Long Term Corrosion of Concrete Sewers (Paper 54)», Conference Proceedings: Corrosion and Prevention 2009: The Management of Infrastructure Deterioration, pp. 15–18. 5. Hewayde, E., Nehdi, M. (2006), «Effect of Geopolymer Cement on Microstructure, Compressive Strength and Sulphuric Acid Resistance of Concrete», Magazine of Concrete Research, no 58 (5), pp. 321–331. 6. Weiss, G. (2010), «Hydraulic Model Tests on a Stormwater Vortex Drop Shaft: Verification of Special Conditions», NOVATECH, Session 2.5, pp. 1–8. 7. Stolbikhin, Iu. (2016), «Development of Methods for Preventing Corrosion of Sewerage Collectors and Structures on the Basis of Improving the Energy Dissipation Chambers», Abstract of PhD Thesis, Water Supply, Sewerage, Construction Systems for Water Resources, Saint Petersburg State University of Architecture and Civil Engineering, Saint-Petersburg, RU. 8. Stolbikhin, Iu. V. (2015), «The Research of Ejection Process in Energy Dissipation Chamber», Bulletin of Civil Engineers, no 3 (50), pp. 202–210. 9. Lazev, A. V., Kudriavtsev, A. V., Fedorov, S. V. (2015). «Modelirovanie razdelitelnoi kamery s koltsevym vodoslivom» [Simulation of a Separation Chamber with a Ring Weir]. Aktualnye problemy sovremennogo stroitelstva. [Actual Problems of Modern Construction]. Materialy 68-i mezhdunarodnoi nauchno-prakticheskoi konferentsii studentov aspirantov i molodykh uchenykh Sankt-Peterburgskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. [Materials of the 68th international scientific and practical conference of students, graduate students and young scientists. Saint Petersburg State University of Architecture and Civil Engineering]. SPSUACE. St. Petersburg., p. 396 (in Russian). 10. (2009), ANSYS CFX - Solver Theory Guide [S.l.]: ANSYS, Inc., p. 261. 11. Khitrykh, D. P. (2014), «Recommendations on using Meshing Postprocessor «Ansys Meshing», Ansys Advantage. Russian editorial office, no 20, pp. 34–43. 12. Vasilev, V. (1996), «Increase of Efficiency of Sewerage Collectors and Structures on them in the Joint Movement of Waste Water and Gases», Abstract of D. Sc. Thesis, Water Supply, Sewerage, Construction Systems for Water Resources., Saint Petersburg State University of Architecture and Civil Engineering (SPSUACE)., Saint-Petersburg, RU. 13. Alekseev, M. (1972), «Investigation of Differences on the Sewage Network», Abstract of PhD Thesis, Water Supply, Sewerage, Construction Systems for Water Resources., Leningrad Order of Labor Red Banner Engineering and Construction Institute., Leningrad, USSR.


Introduction: The assessment of the quality of surface water by the integrated indicators on accepted techniques does not reflect the true picture of water pollution. Thus the rating of water to a certain class of quality should be considered as conditional statement since these characteristics do not make it possible to separate the contribution of the natural and anthro pogenic components. It would be more correct to compare the concentrations of chemicals with regional background values. Purpose: The aim of this work is the development of a methodical appro ach to determining the water quality of the Upper Ob River by the example of the Novosibirsk Reservoir in periods of different water content by integrated quality indicators based on water quality targets characteristics. Results: The necessity to consider the regional backgrou nd concentrations of chemicals was shown on the example of Novosibirsk reservoir. The pro cedures of determining of water quality class with maximum permissible concentration and target characteristics of water quality held as the regional backgrou nd concentrations were compared for the years of different water and different hydro logical seasons. If target characteristics of water quality have been taken as deemed “natural pollution” or the natural backgrou nd, then the anthro pogenic pollution is determined by the excess of the value of these indicators. Practical relevance: Proposed by the authors method of assessing water quality, based on a comparison of concentrations of chemicals with a regional background values makes it possible to more accurately determine the quality of the reservoir water, isolating the contribution of anthropogenic pollution. This allows to get an adequate picture of the quality of water reservoirs in different regions, as well as a reasonable claim against the polluters.
Key words: Water Quality, Integrated Indicators, Water Content.
References: 1. Dvurechenskaya, S. Ya., Bulycheva, T. M., Savkin, V. M. (2012). «Water-Ecological Features of the Formation of the Hydrochemical Regime of the Novosibirsk Reservoir», Water: chemistry and ecology, no. 9, pp. 8–13 (in Russian). 2. Dvurechenskaya, S. Ya., Bulycheva, T. M. (2015). «On the Issue of Methodological Approaches to the Determination of Water Quality by Integrated Indicators (by the example of the Novosibirsk Reservoir)», Water: chemistry and ecology, no. 10, pp. 32–37 (in Russian). 3. RD 52.24.643 – 2002. (2003), Metodicheskie ukazaniya. Metod kompleksnoj ocenki stepeni zagryaznennosti poverxnostnyx vod po gidroximicheskim pokazatelyam. SPB.: Gidrometeoizdat. 49 s [Methodical Instructions. Method for the Integrated Assessment of the Degree of Contamination of Surface Waters by Hydrochemical Indicators], Gidrometeoizdat. SPb., p. 49 (in Russian). 4. Levich, A. P., Bulgakov, N. G., Maksimov, V. N., Risnik, D. V. (2011). «In situ» - texnologiya ustanovleniya lokalnyx ekologicheskix norm» [«In situ»-Technology for Establishing of Local Environmental Standards]. Voprosy ekologicheskogo normirovaniya i razrabotka sistemy ocenki sostoyaniya vodoemov. [Issues of Environmental Regulation and the Development of a System for Assessing the State of Water Bodies]. Materialy obedinennogo plenuma nauchnogo soveta OBN RAN po gidrobiologii i ixtiologii. gidrobiologicheskogo obshhestva pri RAN i mezhvedomstvennoj ixtiologicheskoj komissii. [Proceedings of the Joint Plenum of the Scientific Council of the Russian Academy of Science on Hydrobiology and Ichthyology and Hydrobiological Society at the Russian Academy of Sciences and the Interdepartmental Ichthyological Commission], in Pavlov, D. S., Rozenberg, G. S., Shatunovskij, M. I. (ed.). Tovarishhestvo nauchnyx izdanij. KMK. M., p. 196 (in Russian). 5. Volkov, I. V., Zalicheva, I. N., Ganina, B. C., Ilmast, T. B., Kajmina, N. V., Movchan, G. V., Shustova N. K. (1993). «On the Principles of Regulation of Anthropogenic Pressure on Aquatic Ecosystems», Water resources, vol. 20, no. 6, pp. 707–713 (in Russian). 6. Ermolaeva, N. I., Dvurechenskaya, S. Ya., Anoshin, G. N. (2000). «The Study Of Heavy Metal Distribution in the Novosibirsk Reservoir Ecosystem», Geochemistry International, vol. 38, no. 5, pp. 514–521. 7. Alekin, O. A. (1970). Osnovy gidroximii. [Fundamentals of Hydrochemistry], Gidrometeoizdat. L., p. 442 (in Russian). 8. Palagano da Rochа Monyque, Dourado Priscila Leocadia Rosa, Rodrigues, Jorge Luiz Raposo Mayara de Souza, Grisolia Alexeia Barufattia, Pires de Oliveira Kelly Mari. (2015). «The Influence of Industrial and Agricultural Waste on Water Quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil)», Environmental Monitoring and Assessment, no. 07, p. 4475. 9. Calijuri M. L., Jackeline de Siqueira Castro, Costa L. S., Assemany P. P, José Ernesto Mattos Alves. (2015). «Impact of Land Use/land Cover Changes on Water Quality and Hydrological Behavior of an agricultural Subwatershed», Environmental Earth Sciences, no. 9, pp. 74–80. 10. Shimelis Setegn. (2015). «Water Resources Management for Sustainable Environmental Public Health», in Shimelis Gebriye Setegn, Maria Concepcion Donoso (ed.), Sustainability of Integrated Water Resources Management: Water Governance, Climate and Ecohydrology, Springer International Publishing, Сhapter 15, pp. 275–287. 11. Rozenberg, G. S., Evlanov, I. A., Seleznyov, V. A., Mineev, A. K., Seleznyova, A. V., Shitikov, V. K. (2011). «Opyt ekologicheskogo normirovaniya antropogennogo vozdejstviya na kachestvo vody (na primere vodoxranilishh Srednej i nizhnej volgi» [Experience in the Environmental Rationing of Anthropogenic Impact on Water Quality (on the example of the reservoirs of the Middle and Lower Volga)]. Voprosy ekologicheskogo normirovaniya i razrabotka sistemy ocenki sostoyaniya vodoemov. [Issues of environmental regulation and the development of a system for assessing the state of water bodies]. Materialy obedinennogo plenuma Nauchnogo soveta OBN RAN po gidrobiologii i ixtiologii Gidrobiologicheskogo obshhestva pri RAN i Mezhvedomstvennoj ixtiologicheskoj komissii [Proceedings of the Joint Plenum of the Scientific Council of the Russian Academy of Science on Hydrobiology and Ichthyology and Hydrobiological Society at the Russian Academy of Sciences and the Interdepartmental Ichthyological Commission], in Pavlov, D. S., Rozenberg, G. S., Shatunovskij, M. I. (ed.), Tovarishhestvo nauchnyx izdanij. Kmk. M., p. 196 (in Russian). 12. Savkin, V. M., Dvurechenskaya, S. Ya., Orlova, G. A., Bulycheva, T. M. (2003). «Formation of the Hydro-Hydrochemical Regime of the Upper Ob River on the site of the Novosibirsk Reservoir in the Conditions of changing the Natural and Technogenic Situation», Siberian Ecological Journal, vol. 10, no. 2, pp. 171–179 (in Russian). 13. Savkin, V. M., Dvurechenskaya, S. Ya. (2014). «Resources-related and Water-Environmental Problems of the Complex use of the Novosibirsk Reservoir», Water Resources, vol. 41, no. 4, pp. 446–453. 14. (2014). Prikaz Nizhne-Obskogo bassejnovogo upravleniya №285 ot 25.08.2014. SKIOVO bassejna r. Ob. [The Order of the Lower-Ob Basin Management No. 285 of August 25, 2014. SKIOVO of the Ob river basin]. Available at: (accessed 10 February 2015) (in Russian). 15. RD 52.24.309-2011. (2011). Organizaciya i provedenie rezhimnyx nablyudenij za zagryazneniem poverxnostnyx vod sushi na seti Roskomgidrometa [Organization and Conducting of Controlled Observations of Surface Water Pollution on the Roskomgidromet network], Rosgidromet, FBGU "GXI". Rostov-on-Don (In Russian). 16. Perechen metodik, vnesennyx v gosudarstvennyj reestr metodik kolichestvennogo khimicheskogo analiza. Chast 1. Kolichestvennyj khimicheskij analiz vod. [List of methods introduced in the State Register of Quantitative Chemical Analysis Techniques. Part I. Quantitative Chemical Analysis of Waters]. Available at: (accessed 16 May 2016) (in Russian). 17. (2014). Gosudarstvennyj doklad «O sostoyanii i ob oxrane okruzhayushhej sredy Novosibirskoj oblasti v 2013 godu». Novosibirsk. Departament prirodnyx resursov i oxrany okruzhayushhej sredy novosibirskoj oblasti. [State report "On the state and protection of the environment of the Novosibirsk region in 2013." Novosibirsk. Department of Natural Resources and Environmental Protection of the Novosibirsk Region], p. 220 (In Russian).


Introduction: In the conditions of constantly growing volumes of waste and increasing environmental requirements of the waste processing, the traditional methods of biogas and zoogenic processing of waste are insufficient. Purpose: To create, to substantiate and to study the parameters of biogenic system based on the simultaneous use of biogas and vermitechnology. Methods: an experimental set, in which methods of obtaining of biogas and vermitechnologies method was technologically combined into one unit. Results: it is expected that the combined use of biogas technology and vermitechnology will greatly enhance the efficiency of processing of organic waste compared to biogas and biogenic technologies applied separately. It is revealed that methane fermentation is carried out at medium and high temperatures. The best performance is achieved with thermophilic methane fermentation. The peculiarity of the methane consortium allows to make the fermentation process in continuous mode. For the normal course of anaerobic digestion process the following optimal conditions are required: temperature; anaerobic conditions; a sufficient concentration of nutrients; the allowable range of pH values, the absence or low concentration of toxic substances. Practical relevance: it is suggested that the new combined method of using biogas technology and vermitechnology will significantly reduce the consumption of fossil fuels to generate electricity and will increase efficiency. One of the directions of the new method may be waste management of the livestock enterprises. Also promising is the use of this method in the rural areas for family farms waste processing, which will provide these farms with an additional energy and valuable fertilizers.
Key words: Keywords: Biogas, Vermitechnology, Vermicompost, Fermentation, Shoulders, Renewable Energy, Waste, Waste to Energy Processes.
References: 1. Yeldishev, Yu. N. (2003), “Wastes: not to Bury, but Recycle”, Ecology and Life, no. 1, pp. 52 – 56 (in Russian). 2. Krook, J., Svensson, N., Eklund, M. (2012), “Landfill Mining: A Critical Review of two Decades of Research”, Waste Management, vol. 32, no. 3, pp. 513–520. 3. Pires, A., Martinho, G., Chang, N.-B. (2011), “Solid Waste Management in European countries: A review of Systems Analysis Techniques”, Journal of Environmental Management, vol. 92, no. 4, pp. 1033–1050. 4. Zhang, L. (2013), “Production of Bricks from Waste Materials – A review”, Construction and Building Materials, vol. 47, pp. 643–655. 5. Kovshov, S. V., Garkushev, A. U., Sazykin, A. M. (2015), “Biogenic Technology for Recultivation of Lands Contaminated due to Rocket Propellant Spillage”, Acta Astronautica, vol. 109, pp. 203-207. 6. Karellas, S., Boukis, I., Kontopoulos G. (2010), “Development of an Investment Decision Tool for Biogas Production from Agricultural Waste”, Renewable and Sustainable Energy Reviews, vol. 14, is. 4, pp. 1273–1282. 7. Nikulin, A. N., Epifancev, K. V., Kovshov, S. V., Korshunov, G. I. (2014), “The research of possibility to use the Machine for Biofuel Production as a Mobile Device for Poultry Farm Waste Recycling”. Life Science Journal, vol. 11, no. 4, pp. 464-467. 8. Ofoefule, A. U., Nwankwo, J. I., Ibeto, C. N. (2010), “Biogas production from Paper Waste and its Blend with Cow Dung”, Advances in Applied Science Research, vol. 1, no. 2, pp. 1-8. 9. Boyer, S., Wratten, S. D. (2010), “The Potential of Earthworms to Restore Ecosystem Services after opencast Mining – A review”, Basic and Applied Ecology, vol. 11, is. 3, pp. 196–203. 10. Gupta, R., Garg, V.K. (2011), “Potential and possibilities of Vermicomposting in Sustainable Solid Waste Management: a Review”, International Journal of Environment and Waste Management, vol. 7, no. 3-4, pp. 210 – 234. 11. Suthar, S. (2010), “Recycling of Agro-Industrial Sludge through Vermitechnology”. Ecological Engineering, vol. 36, pp. 1028–1036. 12. Baader, V., Done Е., Brennderfer, М. (1982), Biogas: teoria i praktika [Biogas: Theory and Practice]. Kоlоs. M., p. 148 (in Russian). 13. Holm-Nielsen, J. B., Al Seadi, T., Oleskowicz-Popiel, P. (2009), “The Future of Anaerobic Digestion and Biogas Utilization”. Bioresource Technology, vol. 100, no. 22, pp. 5478–5484. 14. Bautin, V. М., Lazovskiy, V. V. (2002), Energetica dlya sela [Energy for the Village]. FGNU Rosinformagroteh. M., p. 183 (in Russian). 15. Ali, U., Sajid, N., Khalid, A., Riaz, L., Rabbani, M. M., Syed, J. H., Malik R. N. (2015), “A Review on Vermicomposting of Organic Wastes”, Environmental Progress & Sustainable Energy, vol. 34, no. 4, pp. 1050 – 1062. 16. Igonin, А. М. (2002), Dozhdevye chervi: kak povysit plodorodie pochv v desyatki raz, ispol’zuya dozhdevogo chervya-“staratelya” [Earthworms: How to Raise Soil Fertility in Dozens of Times Using Earthworm-"Prospector"]. Mashtex. Kovrov, p. 192 (in Russian).


Introduction: The branching crustaceans Daphnia magna Straus are among the first test organisms to be used to assess the degree of toxicity of aquatic environments. In modern control of the quality of natural and waste water, Bioassay using Daphnia magna are the most common. Purpose: To analyze the features and advantages of the laboratory culture of Daphnia magna Straus for bioassay aqueous media, and to test the spectrum of test functions for the evaluation of test media. Results: The impact of such factors as the density of model groups, the temperature conditions of the contents, the chemical composition of the cultivation waters and their values for the sensitivity of test organisms to toxicants have been determined on the responses of crustaceans. An analysis of the diversity of bioassay methods using the Daphnia magna test organism has been carried out, which has revealed that the most common methods are those involving the death of crustaceans in model groups. In experiments with model aqueous solutions and natural waters, it was shown that in the implementation of this approach, situations of unauthorized recognition of a harmless sample are possible. For example, when exposure to organisms of a dose of heavy metals is less than the mean lethal concentration, important environmental effects are missed, including those delayed in time. In this case, it is necessary to evaluate sublethal effects of Daphnia magna: heart rate, biochemical parameters, linear body size, biomass of model populations. In a series of our studies, the effects diagnosed under the conditions of a chronic experiment are shown. We propose to quantify the set of test functions available for accounting without special equipment, and therefore easily implemented in the practice of many environmental laboratories: the mortality and fertility of adults of Daphnia magna, the time of maturation of individuals, the number of abortive eggs, the number of stillborn young. For the most detailed study of the effect of individual substances or their combinations, a bioassay approach based on the evaluation of effects in several consecutive generations of Daphnia magna is proposed. This makes it possible to establish the compatibility of the level of chemical contamination with the long-term existence of the population, which is especially important when extrapolating the results of bioassay to natural ecosystems.
Key words: Keywords: Bioassay, Daphnia Magna Straus, Test-Function, Mortality, Fertility, Toxic Effects, Contaminants, Natural Waters.
References: 1. Van Loon, W. V. G. M., Hermens, L. M. (1995), «Monitoring Water Quality in the Future», Mixture toxicity parameters, no. 2. pp. 116–118. 2. Michukova, M. V., Kanarskij, A. V., Kanarskaya, Z. A. (2006), «Study of the Toxicity of Waste Water from Pulp and Paper Production using the Biotesting Method at Daphnia magna Str.», Bulletin of Kazan Technological University, № 1, pp. 95–102 (in Russian). 3. Pushkar', V. YA., Shchegol'kova, N. M., Kozlov, M. N., Danilovich, D. A. (2006), «Biotesting of Biologically Purified Waste Water», Ecology and Industry of Russia, №. 4, pp. 29–31 (in Russian). 4. Kondrat'ev, S. A. (2007), «Evaluation of Sewage Toxicity of Large Metallurgical Enterprises by the method of Biotesting», Water resources, vol. 34, № 1, pp. 97–103 (in Russian). 5. Zhmur, N. S. (1997), Gosudarstvennyj i proizvodstvennyj kontrol' toksichnosti vod metodami biotestirovaniya v Rossii [State and Industrial Control of Water Toxicity by methods of Biotesting in Russia], Izdatel'stvo Mezhdunarodnyj dom sotrudnichestva. М., pp. 6–19 (in Russian). 6. Vavilova, M. V., Terekhova, V. A. (2008), Tekhnologii biotestirovaniya: EHkotoksikologicheskaya ocenka obektov okruzhayushchej sredy [Biotesting technologies: Ecotoxicological assessment of environmental conditions], Izdatel'stvo MGU. M., p. 82 (in Russian). 7. Nikanorov, A. M., Trunov, N. M. (1999), Vnutrivodoemnye processy i kontrol' kachestva prirodnyh vod [Intra-water processes and Quality Control of Natural Waters], Izdatel'stvo Gidrometeoizdat. S-Pb., p. 150 (in Russian). 8. Ecobichon, D. J. (1992), The Basis of Toxicity Testing. Fl.: CRC Press, p. 329. 9. Braginskij, L. P. (2000), «Methodological aspects of Toxicological Biotesting at Daphnia magna St. and other Branching Crustaceans (critical review)», Hydrobiological Journal, vol. 36, №. 5, pp. 50–70 (in Russian). 10. Naumann, E. (1933), «Daphnia magna Straus als Versuchtiere», Kgl. Fysiog. Saliskap, Lund forhunde, № 2, pp. 1–49. 11. Brown, I. A. (1929), «The natural history of Cladocerans in relation to Temperature. Temperature coefficient for development», Amer. Nat., № 63, pp. 346–352. 12. Stroganov, N. S., Isakova, E. F., Kolosova, L. V. (1989), «Method for biotesting water quality using Daphnia», Metody bioindikacii i biotestirovaniya prirodnyh vod:, №. 1, p. 78 (in Russian). 13. Lesnikov, L. A., Mosienko, T. K. (1992) Priemy bioindikacii, biotestirovaniya pri tekushchem nadzore za zagryaznennost'yu vodnyh obektov i vyyavlenii prevysheniya ih assimiliruyushchej sposobnosti. Metodicheskie ukazaniya. [Methods of bioindication, biotesting with current surveillance of the contamination of water bodies and detection of excess of their assimilating capacity. Methodical instructions], Izdatel'stvo GosNIORH. S.-Pb., p. 79 (in Russian). 14. Ol'kova, A. S., Fokina, A. I. (2015) «Daphnia magna Straus in the biotesting of natural and man-made environments», Advances in modern biology, vol. 135, №. 4, pp. 380–389 (in Russian). 15. FR.1.39.2007.03222 (2007), Metodika opredeleniya toksichnosti vody i vodnyh vytyazhek iz pochv, osadkov stochnyh vod, othodov po smertnosti i izmeneniyu plodovitosti dafnij [The methodology for determining the Toxicity of water and Water Extracts from Soils, Sewage Sludge, Waste by Mortality and the change in the Fertility of Daphnia], Izdatel'stvo: Akvaros. M, p. 52 (in Russian). 16. (2015), «Ob utverzhdenii Kriteriev otneseniya othodov k I - V klassam opasnosti po stepeni negativnogo vozdejstviya na okruzhayushchuyu sredu» [On Approval of the Criteria for the Recognition of Waste to I - V Classes of Danger according to the degree of negative impact on the environment], Prikaz Minprirody Rossii № 536 (in Russian). 17. Vorobeva, O. V., Filenko, O. F., Isakova, E. F. (2013), «Changes in the Fertility of Laboratory Culture D. magna», Perspectives of Science, №. 9 (48), pp. 11–14 (in Russian). 18. Misejko, G. N., Tushkova G., I., Ckhaj I., V. (2001), «Daphnia magna (Crustacea Cladocera) as a test object under optimal Conditions of Laboratory Cultivation», Bulletin of Altai State University, №. 3, pp. 83–86 (in Russian). 19. Filenko, O. F., Isakova, E. F., Chernomordina, A. V. (2004), «Peculiarities of Potassium Dichromate on generation and Model Populations of Inferior Crustaceans», Aktual'nye problemy vodnoj toksikologii: sb statej, Izdatels'vo Instituta biologii vnutrennih vod RAN. Borok, pp. 176–194 (in Russian). 20. Shashkova, T. L., Grigor'ev, Yu. S. (2013), «The Action of Heavy Metals on the Trophic Activity of Daphnia, Depending on the Feeding Conditions and the age of the Crustaceans», Siberian Ecological Journal, vol. 20, №. 6, p. 885 (in Russian). 21. Ol'kova, A. S. (2013), «Search of Informative Test-Functions Daphnia magna at Biotesting of Components of an Environment», Biosistema: ot teorii k praktike: sb. tr. Pushchino, pp. 92–94 (in Russian). 22. Matorin, D. N., Venediktov, P. S. (2009), «Biotesting of Water Toxicity from the rate of Absorption by Daphnia Microalgae Recorded with the help of Fluorescence of Chlorophyll», Bulletin of Moscow University, Ser. 16, Biology, № 3, pp. 28–33 (in Russian). 23. Podosinovikova, N. P., Ezhov, N. F., Sajkina, N. A. (2008), «Heart rate in Daphnia magna as a Functional Test for the Evaluation of the effect of Chemical Compounds», Experimental and Clinical Pharmacology, vol. 73, №. 3, pp. 54–56 (in Russian). 24. Meijering, M. P. D. (1999), «Herzfequenz und Lebensablauf von Daphnia magna Straus», Zs. wiss. Zool, pp. 3–4. 25. Usanov, A. D. (2004), «Investigation of the effect of alternating magnetic and electric fields on living organisms and the aquatic environment using daphnia as a bioindicator», Abstract of PhD thesis, Biophysics, N. G. Chernyshevsky Saratov State University, Saratov, RU. 26. Kulagina, K. V. (2011), «Investigation of the dependence of the Heart Rate of Daphnia magna on the Concentration of Pesticides», Fundamental research, № 3, pp. 191–197 (in Russian). 27. Atienzar, F. A., Cheung, V. V., Jha, A. N., Depledge, M. H. (2001), «Fihness paramaters and DNA effects are Sensitive Indicators of Copper-Induced Toxicity in Daphnia magna», Toxicological sciences, vol. 59, pp. 241–250. 28. Rinke, K., Petzoldt, T. (2003), «Modeling the effects of temperature and food on individual growth and reproduction of Daphnia and their consequences on the population level», Limnologica. no. 33. pp. 293–304. 29. Nikanorov, A. M.,. ZHulidov, A.V. (1991), Biomonitoring metallov v presnovodnyh ehkosistemah [Biomonitoring of Metals in Freshwater Ecosystems], Izdatel'stvo Gidrometeoizdat. S-Pb., p. 312 (in Russian). 30. SanPiN (2010) «Pit'evaya voda. Gigienicheskie trebovaniya k kachestvu vody centralizovannyh sistem pit'evogo vodosnabzheniya. Kontrol' kachestva» [Drinking water. Hygienic Requirements for Water Quality of Centralized Drinking Water Supply Systems. Quality control] (in Russian). 31. GN (2003) «Predel'no-dopustimye koncentracii (PDK) himicheskih veshchestv v vode vodnyh ob"ektov hozyajstvenno-pit'evogo i kul'turno-bytovogo vodopol'zovaniya» [Maximum Permissible Concentration (MPC) of Chemical Substances in water of Water Objects of Domestic-drinking and Cultural -domestic water use] (in Russian). 32. Perel'man, A. I. (1989), Geohimiya [Geochemistry]. Izdatel'stvo: Vyssh. shk. M., p. 528 (in Russian). 33. Polyakova, E. V. (2012), «Strontium in the sources of Water Supply in the Arkhangelsk region and its impact on the Human Body», Ecology of man, №. 2, pp. 9–14 (in Russian). 34. Ivashkina, N. V., Sokolov, O. A. (2006), «Blocking potassium channels of root cells with heavy metals and strontium», Agrochemistry, № 12, pp. 47–53 (in Russian). 35. Hanazato, T. (1998), «Growth analysis of Daphnia early Juvenile Stages as an Alternative Method to test the Chronic Effect of Chemicals», Chemosphere, vol. 36, № 8, pp. 1903–1909. 36. Sobral, O., Chastinet, C., Nogueira, A., Soares, A., Goncalves, F., Ribeiro, R. (2001), «In vitro development of parthenogenetic eggs: a fast ecotoxicity test with Daphnia magna?», Ecotox. Environ, no. 50, pp. 174–179. 37. ISO 6341 (1996), «Water quality determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - acute toxicity test». 38. Allen, Y. A., Calow, P., Barid, D. J. (1995), «Mechanistic model of contaminant-induced feeding inhibition in Daphnia magna», Environment Toxicology and Chemistry, vol. 14, № 9, pp. 1625–1630.



Abstract The results of laboratory studies and industrial experiments on neutralization and purification of highly mineralized acidic and hard spent regeneration solutions of H- and Na-cationite filters of an ion-exchange water-preparation plant of a thermal power plant are presented. As a reagent we used traditional – lime milk and coagulant, as well as carbonate sludge from the pre-treatment of water treatment plants. Sludge was used in the form of slime clarifier waters and in the form of sludge milk from accumulated waste. It is shown that in all cases in acidic and hard waste there is an adequate decrease in total salt content, hardness, salts content and pH growth. It was found that with the lime treatment of liquid waste with an excess of lime, an alkaline solution with a pH of about 11 is obtained, which requires additional neutralization. The action of the sludge is softer, because even with a two-three fold excess, a practically neutral solution is obtained, which can be directly discharged. In addition, when treating with sludge, there is a decrease in silicon compounds, iron and organic substances, probably due to the presence of coagulant and magnesium compounds in the sludge. Industrial tests and technology development were carried out at the operating thermal power plant – Nizhnekamsk power plants 1.
Key words: Keywords: Acid and hard spent regeneration solutions, sulphates, cleaning, thermal power plants.
References: References 1. Gromoglasov, A. A. (1990). Vodopodgotovka: processy i apparaty. [Water treatment: processes and devices]. M.: EHnergoatomizdat, 272 s. 2. Evgen'ev, I. V., CHichirova, N. D. (2001). «Rol' vodnogo balansa TEHS v razrabotke besstochnyh tekhnologij na primere Kazanskoj TEHC-3» [The role of the water balance of TPPs in the development of drainage technologies based on the example of Kazan CHP-3], Izvestiya vysshih uchebnyh zavedenij. Problemy ehnergetiki, № 9-10, S. 96. 3. Zakirov, I. A., Korolev, A. G., CHichirova, N. D., CHichirov, A. A., Vlasov, S. M., Pajmin, S. S., (2013). «Resursosberegayushchie tekhnologii pri sozdanii zamknutyh sistem vodopol'zovaniya na TEHS» [Resource-saving technologies in the development of closed water use systems at TPPs], Izvestiya vysshih uchebnyh zavedenij. Problemy ehnergetiki, №11–12. S. 55–60. 4. Chichirova, N. D., Chichirov, A. A., Vlasov, S. M. (2013). Vodopodgotovitel'naya ustanovka teplovoj ehlektrocentrali. [Water treatment plant of thermal power plant] RF, patent № 133122. 5. Chichirova, N. D., Chichirov, A. A., Vlasov, S. M. (2013). Vodopodgotovitel'naya ustanovka teplovoj ehlektrocentrali. [Water treatment plant of thermal power plant] RU, patent № 133526, 6. Kucenko, S. A., Hruleva, ZH. V. (2010). Sposob ochistki kislyh stochnyh vod ot sul'fatov tyazhelyh metallov [A method of purifying acidic waste water from heavy metal sulfates], RU, patent № 2448054 7. Popik, V. P., Zamanskij V. YA., Pavilajnen, YU. V., Trubicyn, M. B., Fedotov A. K., Bogdanov A. E., Sidorov, A. P. (1994). Sposob ochistki kislyh stochnyh vod ot ionov tyazhelyh metallov [A method of purifying acidic waste water from heavy metal ions], RU, patent № 2010013. 8. Shamraeva, Yu. K., Pavluhina, L. D., Yurkova, V. M., Pavlova E. M. (1987). Sposob ochistki sul'fatsoderzhashchih stochnyh vod [Method for purification of sulphate-containing wastewater], SSSR, № 1330078. 9. Nazarov, V. D., Smirnov, YU. YU., Nazarov, M. V. (2009). Sposob nejtralizacii kislyh sul'fatsoderzhashchih stochnyh vod [The method of neutralization of acid sulfate-containing wastewater], RU, patent № 2355647. 10. Nazarov, V. D., Smirnov, YU. YU., Nazarov, M. V (2002). Sposob nejtralizacii kislyh sul'fatsoderzhashchih stochnyh vod. [The method of neutralization of acid sulfate-containing wastewater], RU, patent № 2183336,. 11. (2011). Federal'nyj zakon Rossijskoj Federacii «O vodosnabzhenii i vodootvedenii» [The Federal Law of the Russian Federation "On Water Supply and Sanitation"] № 416-FZ ot 07.12.2011 (red. ot 13.07.2015). 12. (2014). Federal'nyj zakon Rossijskoj Federacii «O vnesenii izmenenij v Federal'nyj zakon "Ob othodah proizvodstva i potrebleniya", otdel'nye zakonodatel'nye akty Rossijskoj Federacii i priznanii utrativshimi silu otdel'nyh zakonodatel'nyh aktov (polozhenij zakonodatel'nyh aktov) Rossijskoj Federacii» № 458-FZ ot 29.12.2014. 13. Federal'nyj zakon Rossijskoj Federacii «O vnesenii izmenenij v Federal'nyj zakon "Ob ohrane okruzhayushchej sredy"» [Federal Law of the Russian Federation "On Amendments to the Federal Law" On Environmental Protection],№ 219-FZ ot 21.07.2014 (red. ot 29.12.2014). 14. Chichirova N.D., Chichirov A.A., Korolyov A.G., Vafin T.F., (2010). «Ehkologicheskaya i ehkonomicheskaya ehffektivnost' vnedreniya resursosberegayushchih tekhnologij na teplovyh ehlektricheskih stanciyah» [Ecological and economic efficiency of introduction of resource-saving technologies at thermal power plants], Trudy Akademehnergo, № 3. S, 65–71. 15. Chichirova, N. D., Chichirov, A. A., Lyapin, A. I., Korolyov, A. G., Vafin, T. F., (2010). «Razrabotka i sozdanie TEHS s vysokimi ehkologicheskimi pokazatelyami». [Development and creation of thermal power plants with high environmental indicators] Trudy Akademehnergo, № 1, S. 34–44.


Abstract The treatment of waste water in the complex of treatment facilities of the city as a controlled process is considered. The unit volume of water, characterized by a combination of pollution components, which, passing through the technological chain of treatment facilities, is subjected to control actions (dosage of coagulants, activated sludge, degree of aeration) is analyzed. The authors consider cleaning process as the displacement of the representative point in the space of the contamination parameters into an area limited by their maximum permissible values. It is shown that the achievement of the desired goal is possible with the use of various control strategies. The concept of the quality of process control is introduced. The problem of optimal control of wastewater treatment by the chosen criterion is formulated.
Key words: Key words: sewage, Component of pollution, Complex of treatment facilities, Control action, Degree of purification, Control criterion.
References: References 1. Yakovlev, S. V., Voronov, YU. V. (2002). Vodootvedenie i ochistka stochnyh vod [Waterdisposal and wastewater treatment]. M.: ASV, 704 s. 2. Yakovlev, S. V. (1985). Biologicheskaya ochistka stochnyh vod: processy, apparaty i sooruzheniya. [Biological wastewater treatment: processes, apparatus and structures.] M.: Strojizdat, 208 s. 3. Hudenko, B. M., SHpirt, E. A. (1973). Aehratory dlya ochistki stochnyh vod. [Aerators for wastewater treatment]. M.: Strojizdat, 112 s. 4. Alekseev, M. I., Ermolin, YU. A. (2009). Teoreticheskie osnovy upravleniya processami ochistki stochnyh vod [Theoretical bases of management of processes of wastewater treatment.]. SPb.: SPbGASU, 174 s. 5. Ermolin, YU. A. (2016). Ekologiya. [Ecology] M.: MGUPS (MIIT), 52 s. 6. Solodovnikov, V. V. (red.) (1967). Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Kniga 1. [Technical cybernetics. Theory of automatic regulation]. Book 1.M.: Mashinostroenie, 768 s. 7. Popov, E. P. (1988). Teoriya nelinejnyh sistem avtomaticheskogo regulirovaniya i upravleniya. [The theory of nonlinear systems of automatic regulation and control.] M.: Nauka, 255 s. 8. Gordin, I. V., Manusova, N. B., Smirnov, D. N. (1977). Optimizaciya himiko-tekhnologicheskih sistem ochistki promyshlennyh stochnyh vod. [Optimization of chemical-technological systems for purification of industrial wastewater.]. L.: Himiya, 176 s. 9. Alekseev, M. I., Ermolin, YU. A. (2004). «Biologicheskaya ochistka stochnoj vody kak process v ehkologicheskoj sisteme «hishchnik–zhertva»»[ Biological wastewater treatment as a process in the ecological system «predator-prey»], Izvestiya vuzov. Stroitel’stvo, № 3, S. 74–77. 10. Alekseev, M. I., Ermolin, YU.A., Pavlinova, I. I. (2005). «Dinamika funkcionirovaniya pervichnogo kanalizacionnogo otstojnika, [Dynamics of the functioning of the primary sewage sump]. Vodosnabzhenie i sanitarnaya tekhnika. 2005, № 1, S. 18–20.


Abstract Introduction: due to necessity of bringing water supply systems in line with federal laws require-ments about reliability and energy conservation appears a necessity of reconstruction of its technical part. However, there are some differences between regimes of water consumption at this moment and regimes of the past because of modern equipment installing and appearance of new more eco-nomical devices. So using of old water consumption irregularity coefficients that we can see in normative documents during 40 years is incorrect. Research objective: to determine water con-sumption hours inequality coefficients and to get water-intake regime diagrams. Results: displace-ment of maximal and minimal water consumption values in comparison with classical diagrams of water consumption inequality were detected: real average daily water consumption was three times lower in comparison with calculated consumption which was taken according to normative docu-ments. Another point that received data allow us to find out a regularity of night period duration for different days of a week. Practical relevance is that this data allows us to correct calculations and raise energy efficiency of water supply systems
Key words: Key words: Water Supply System, Regularity, Hour Irregularity, Instrumental Research, Data Collection.
References: References 1. Grinev, A. P., Sarkisov, S.V., Kuznetsova, N. V. (2015). Sposob opredeleniya grafikov kolebaniya rashoda vodyi na nasosnyih stantsiyah [Determination method of liquid-flow fluctuation on water pumping stations diagrams], Mezhdunarodnyiy Nauchnyiy Institut «Ed-ucatio», no. 3 (10), pp. 156–159. 2. Ivanovskiy, V. S., Ignatchik, V. S., Sarkisov, S.V., Putilin, P.A. (2015). Metodika optimi-zatsii sistem vodosnabzheniya [Optimization of water supply systems method. Proceedings of the Military space academy], Trudyi Voenno-kosmicheskoy akademii imeni A. F. Mozhayskogo, no. 649, pp. 123–129. 3. Ignatchik, V. S., Sarkisov, S. V., Grinev, A. P. (2015). Grafoanaliticheskiy sposob opre-deleniya rashoda vodyi [Grapho-analytical method of water consumption], Vestnik Tyum-GASU, №2, pp. 49–52. 4. Obvintsev, V. A., Ivanovskiy, V. S., Sarkisov, S. V. (2016). Sistema sbora dannyih i za-konomernosti neravnomernogo potrebleniya vodyi v seti zhilogo gorodka [Data and irregular water consumption regularities – getting system], Trudyi Voenno-kosmicheskoy akademii imeni A.F. Mozhayskogo, no. 652, pp.167–172. 5. Decree of the Government of the Russian Federation № 782 “Water supply systems” 6. Putilin, P. A., Sarkisov, S. V. (2015). Rezultatyi eksperimentalnogo issledovaniya pokazate-ley bezotkaznosti setey sistemyi vodosnabzheniya [Results of water supplying systems fail – safety experimental research], Aktualnyie problemyi arhitekturyi, stroitelstva, ekologii i energosberezheniya v usloviyah zapadnoy Sibir, pp. 204–210. 7. Federal law of Russian Federation № 416 – FL “Water supplying systems”. 8. Federal law of Russian Federation № 261 – FL “Energy conservation and raising of energy effectiveness”. 9. Sarkisov, S. V. (2013) Obrabotka i analiz eksperimentalnyih dannyih energopotrebleniya sistemyi vodosnabzheniya s uchyotom razlichnyih rezhimov funktsionirovaniya ob'ekta [Analysis and processing of water supplying system energy consumption experimental data in case of different regimes of work], Novyie issledovaniya v oblastyah vodosnabzheniya, vodootvedeniya, gidravliki i ohranyi vodnyih resursov, Saint–Petersburg, pp. 48–51. 10. Sarkisov, S.V. (2016) Opredelenie avarii v seti vodosnabzheniya po rezul'tatam analiza in-formacii poluchennoj sistemoj sbora dannyh neravnomernosti potrebleniya vody [Results of experimental of irregular water consumption regularities], Estestvennye i tekhnicheskie nauki, no. 11 (101), pp. 164–167. 11. Sarkisov, S. V., Obvintsev, V. A. (2016). Opredelenie avarii v seti vodosnabzheniya po re-zul'tatam analiza informacii poluchennoj sistemoj sbora dannyh neravnomernosti potre-bleniya vody [Determination of failure in the water – supplying system according to analysis of information gained from water consumption irregularity data getting system], Interna-tional scientific conference, Smolensk, pp. 160–164. 12. Ivanovskiy, V. S., Ignatchik, V. S., Ignatchik, S. U., Kuznetsova, N. V. Opredelenie avarii v seti vodosnabzheniya po rezultatam analiza informatsii poluchennoy sistemoy sbora dannyih neravnomernosti potrebleniya vodyi. V: mezhdunarodnoy nauchno-prakticheskoy konferentsii «Aktualnyie voprosyi perspektivnyih nauchnyih issledovaniy». [Water con-sumption analyzing system]. Pat. № 2557349 Russian Federation G01L 1/00, G01F 1/66 / №2014117111/28. Published 20.07.2015. Page №20. 13. Building rules 31.13330.2012 “Water supplying system”. 14. Ignathcik, V. S., Ivanovskiy, V.S., Ignatchik, S. U., Kuznetsova, N.V. (2017). Sposob op-timizatsii sistemyi vodosnabzheniya [Method of water supplying system optimization], RU, Patent № 2608020. 15. Ilyin, U. A., Ignathcik, V. S., Ivanovskiy, V. S., Ignatchik, S. U. (2015). Sposob povy-isheniya energoeffektivnosti nasosnoy stantsii. [Method of water – pumping system energy effectiveness raising], RU, Patent №2561782. 16. Feofanov, U. A. (2010). Prognozirovanie vodopotrebleniya v zhiloy zastroyke Sankt-Peterburga [Predicting of water consumption size in residential area of Saint-Perersburg. 67 scientific conference of university personnel], part 1. Saint-Peterburg : SPBGASU Pages 53–57. 17. Feofanov, U.A. (2011) Obrabotka i analiz eksperimentalnyih dannyih energopotrebleniya sistemyi vodosnabzheniya s uchYotom razlichnyih rezhimov funktsionirovaniya ob'ekta [Analysis of water supply system energy consumption experimental data according to dif-ferent regimes of object functioning. International conference], Novyie dostizheniya v oblas-tyah vodosnabzheniya, vodootvedeniya, gidravliki i ohranyi vodnyih resursov, Saint-Petersburg, pp. 64–67. 18. Udin, M. U., Danilov, A. N., Karabenin, M. S. (2017). Izmenenie vodopotrebleniya v krupnyih gorodah Rossii na primere Sankt-Peterburga. Vodosnabzhenie i sanitarnaya tehni-ka. [Changes of water consumption in the cities of Russian Federation in example of Saint-Petersburg. "Water consumption and equipment"] №1, pages 6-39.


Abstract Introduction: Novosibirsk reservoir as the only large artificial reservoir in the Ob basin was considered. It was shown that hydroelectric complex established in the mid-twentieth century to solve the acute problems of energy supply of Novosibirsk region caused the increase of anthropogenic pressure on water resources of the Upper Ob and Novosibirsk Reservoir. The authors argued that the growth of the energy supply of Western Siberia by Unified Energy System of Siberia at the same time had led to a change of leader in water use in the primary water supply. Research objective: to explore the benefit of multipurpose water-resources system where Novosibirsk reservoir successfully carries out the water requirements. Results: the ways of additional regulation of the Upper Ob River runoff in the interests of the developing diversified water management complex were discovered. Practical relevance: the need for development of a scientifically based strategy for the optimal use of the reservoir’s water resources, taking into account the possibility of increasing the degree of regulation of the Upper Ob River was justified.
Key words: Keywords: Upper Ob, reservoir, water use, priority water supply, pollution, surface water, groundwater.
References: References 1. Vinokurov, Yu. I., Puzanov, A. V., Bezmaternykh, D. M. (ed.) (2012). Sovremennoye sostoyaniye vodnykh resursov i funktsionirovaniye vodokhozyaystvennogo kompleksa basseyna Obi i Irtysha [The current state of water resources and the functioning of the water complex of the Ob and Irtysh basin.]. Novosibirsk: Siberian Branch RAS, 236 pp. (in Russian). 2. Savkin, V. M. (2011). «Osnovnyye vodno-ekologicheskiye problemy pri planirovanii, stroitelstve i ekspluatatsii vodokhranilishch GES na rekakh Sibiri» [The Basic water and environmental problems in the planning, construction and operation of reservoirs of hydroelectric power stations on the Siberian rivers], Sovremennyye problemy vodokhranilishch i ikh vodosborov, Tom 1. Gidro- i geodinamicheskiye protsessy. Perm: Perm State University, pp.147–151. (in Russian). 3. Vinokurov, Yu. I., Zinoviev, A. T., Lovtskaya, O. V., Savkin, V. M. (2008). «Regionalnyye problemy ustoychivogo vodopolzovaniya na yuge Zapadnoy Sibiri». Sb.nauchnykh trudov Vserossiyskoy konferentsii «Strategicheskiye problemy vodopolzovaniya Rossii» [Regional problems of sustainable water use in the South of Western Siberia, The book of scientific papers of the All-Russian Conference» Strategic Problems of Water Use in Russia]. M.: NOK, pp. 323–333 (in Russian). 4. Savkin, V. M. (2000). Ekologo-geograficheskiye izmeneniya v basseynakh rek Zapadnoy Sibiri. [Ecological and geographical changes in river basins of Western Siberia]. Novosibirsk: Nauka, pp. 152. (in Russian). 5. Savkin, V. M., Dvurechenskaya, S. Ya. (2009). Vodosnabzheniye kak osnovnoy komponent vodokhozyaystvennogo kompleksa Novosibirskogo vodokhranilishcha». [Water supply as the main component of the water management complex of the Novosibirsk reservoir, Sovremennyye problemy vodokhranilishch i ikh vodosborov. Perm: Perm State University. pp. 162–167 (in Russian). 6. Savkin, V. M., Dvurechenskaya, S. Ya. (2009). «Osobennosti gidrologicheskikh usloviy i problemy vodopolzovaniya Novosibirskogo vodokhranilishcha». [Features of hydrological conditions and problems of water use of the Novosibirsk reservoir], Voprosy gidrologii i gidroekologii Urala. Perm: Perm State University., pp. 8–14 (in Russian). 7. Dvurechenskaya, S. Ya., Bulycheva, T. M., Savkin, V. M. (2012). «Vodno-ekologicheskie osobennosti formirovaniya gidrohimicheskogo rezhima Novosibirskogo vodohranilischa», [«Water-Ecological Features of the Formation of the Hydrochemical Regime of the Novosibirsk Reservoir»], Voda: himiya i ekologiya, no. 9, pp. 8–13 (in Russian). 8. Savkin, V. M., Dvurechenskaya, S. Ya. (2014). «Resursnyie i vodno-ekologicheskie problemyi kompleksnogo ispolzovaniya Novosibirskogo vodohranilischa», [Resources-related and Water-Environmental Problems of the Complex use of the Novosibirsk Reservoir], Vodnyie resursy, vol. 41, no. 4, pp. 446–453. (in Russian). 9. Savkin, V. M., Dvurechenskaya, S. Ya. (1998). «On the Problem of Water Resources and Water Quality of Novosibirsk Reservoir», International Review of Hydrobiology, Special issue, V. 83, pp. 389–392. 10. Vasiliev, O. F., Savkin, V. M., Dvurechenskaya, S. Ya. (1997). «Vodohozyajstvennye i ehkologicheskie problemy Novosibirskogo vodohranilishcha». Vodnye resursy .[«Water and ecological problems of the Novosibirsk reservoir». Water resources, vol. 24, no. 5. Pp. 581–589. (in Russian). 11. Savkin, V. M., Dvurechenskaya, S. Ya. (2016). «Novosibirskoye vodokhranilishche kak istochnik vodosnabzheniya». [Novosibirsk Reservoir as a source of water supply], Chelovek i voda, istoriya. Siberian State University of Water Transport. Ministry of Transport of the Russian Federation, p.18–26 (in Russian). 12. Ermolaeva, N. I., Dvurechenskaya, S. Ya., Anoshin, G. N. (2000). «Issledovanie raspredeleniya tyazhelyih metallov v ekosisteme Novosibirskogo vodohranilischa». Geohimiya [«The Study Of Heavy Metal Distribution in the Novosibirsk Reservoir Ecosystem», Geochemistry International], vol. 38, no. 5, pp. 514–521. (in Russian). 13. Dvurechenskaya, S. Ya., Savkin, V. M., Smirnova, A. I., Bulycheva T. M. (2001). «Dinamika gidrologo-gidrohimicheskih harakteristik ehkosistemy Novosibirskogo vodohranilishcha», Sibirskij ehkologicheskij zhurnal. [«Dynamics of hydro-hydrochemical characteristics of the ecosystem of the Novosibirsk Reservoir», Siberian Ecological Journal], no. 2, pp. 231–236 (in Russian). 14. Savkin, V. M., Dvurechenskaya, S. Ya., Orlova, G. A., Bulycheva, T. M. (2003). «Formirovaniye gidrologo-gidrokhimicheskogo rezhima Verkhney Obi na uchastke Novosibirskogo vodokhranilishcha v usloviyakh izmeneniya prirodno-tekhnogennoy situatsii», [Formation of the hydrological-hydrochemical regime of the Upper Ob River in the area of the Novosibirsk Reservoir in conditions of changing the natural and man-made situation], Sibirskiy ekologicheskiy zhurnal, vol. 10, no .2, pp.171–179 (in Russian). 15. Vasiliev, O. F. (ed.). (2014). Mnogoletnyaya dinamika vodno-ekologicheskogo rezhima Novosibirskogo vodokhranilishcha. [Long-term dynamics of water and ecological regime of Novosibirsk reservoir]. Novosibirsk: Siberian Branch of RAS, 393 p. (in Russian).


Abstract Currently, the removal of water from crude oil and petroleum products are applied once-private methods: mechanical, physical-chemical, chemical, biochemical. From the physico-chemical methods of high adsorption per cent, which is highly effective and the organization is able to provide multi-process, to remove 99.9% of mineral oil. As sorbents are used as natural (cotton, peat, sawdust, wood chips, straw, clay, per-lite, etc.) As well as artificial and synthetic materials based on viscose, rayon, synthetic fibers, thermoplastic materials, polyurethane and others. For hydrophobization sorbents used paraffin, silicone compounds, polyethylene glycol monoalkyl ethers, and other mac-romolecular compounds. Processing hydrophobizing materials carried by immersion in solutions or melts of the latter, by spraying on the surface, etc. The very water-repellent agent should have good adhesion to the material is evenly distributed and completely covering it, not washed out during operation and is not soluble in petroleum products. In this paper, in order to reduce the water absorption of expanded perlite research HN capabilities hydrophobic surface synthetic polymeric materials: polyvinyl acetate and polyvinyl chloride. The optimal parameters of the process of modification-ry expanded per-lite foregoing. So far, it is shown that the use of the surface activator - monochloramine-CB allows provo¬dit process hydrophobic tempe¬rature at 200C. It was found that the number of fixed-shegosya on the surface of expanded perlite polymer influence the duration of treatment, the content of the activator solution and modifier. The sorption properties of modified perlite were studied. It is shown that the hydro-phile-Byzacena expanded perlite synthetic polymeric materials – polyvinyl acetate and polyvinyl chloride can increase its sorption capacity with respect to petroleum products, on average, 20-40% and 8-20% static and dynamic conditions. At the same time higher oil intensity values exhibit samples of expanded trans-lits, hydrophobized polyvinyl acetate.
Key words: expanded perlite, water absorption, waterproofing, polyvinyl chloride, polyvinyl acetate, oil intensity
References: 1. Andryushin, A. I. (2009). Tekhnologicheskie modeli ochistki stochnyh vod ot plavayushchih, ehmul'girovannyh i rastvorennyh zhirov [Technological models of wastewater treatment from floating, emulsified and dissolved fats], kand. tekhn. nauk. SHCHelkovo, c. 169 2. Bellami, L. (1963). Infrakrasnye spektry slozhnyh molekul. [Infrared spectra of complex molecules] M., Nauka, s. 185 3. Vardanyan, M. A. (2001). Ochistka neftesoderzhashchih stochnyh vod sorbcionnym metodom na vspuchennom perlite i razrabotka tekhnologii [Purifica-tion of oily waste water by sorption method on expanded perlite and development of technology], kand. tekhn. nauk. Erevan, 144 c. 4. Vardanyan, M. A. (2014). «Ochistka neftesoderzhashchih vod v nasypnom fil'tre na sloe vspuchennogo perlita»[ Purification of oily waters in a bulk filter on a layer of expanded perlite]. Voda i ehkologiya: problemy i resheniya, №4, S. 40–48 5. Vardanyan, M. A., Varderesyan, G. C., Minasyan, A. SH., Tagmazyan, K. C. (2000). Poluchenie modificirovannogo vspuchennogo perli-ta i issledovanie ego maslopoglotitel'noj sposobnosti [Preparation of modified expanded perlite and in-vestigation of its oil absorption capacity]. Informacionnye tekhnologii i upravlenie. №1.pp.178¬–180. 6. Kartamysh, S. V., Perfil'ev, A. V., YUdakov, A. A., Suhoverov, S. V. (2010). «Primenenie gidrofobizirovannyh adsorbentov dlya ochistki poverhnostnyh sto-chnyh vod ot nefteproduktov» [The use of hydrophobized adsorbents for the treatment of surface sewage from oil products]. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk, t.12, №1 (5), 1226–1231 s. 7. Krupa, A. A. (1988). Kompleksnaya pererabotka i ispol'zovanie perlitov.[ Complex processing and use of perlites.] Kiev: Naukova dumka, 120 s. 8. Lure, YU. YU., Rybnikova, A. I. (1974). Himicheskij analiz proizvodstvennyh sto-chnyh vod [Chemical analysis of industrial wastewater]. M.: Himiya, 334 s. 9. Sidorov, A. N. (1956). «Issledovanie svojstv poverhnosti poristyh stekol metodom IK-spektroskopii» [Investigation of surface properties of porous glasses by IR spectroscopy], ZHurnal fizicheskoj himii. Т.30, №5, pp.995–997 10. Sirotkina, E. E., Novoselova, L. YU. (2005). «Materialy dlya adsorbcionnoj ochistki vody ot nefti i nefteproduktov» [Materials for adsorption treatment of water from oil and petroleum products]. Himiya v interesah ustojchivogo razvitiya, №13, s. 359. 11. Strepetov, I. N., Moskvicheva, E. V. (2006). «Ispol'zovanie sorbentov na osnove othodov polimernyh materialov dlya ochistki stochnyh vod ot neftyanyh zagrya-znenij» [Use of sorbents on the basis of waste polymeric materials for sewage treatment from oil pollution]. Internet-vestnik VolGASU. №1, available at: 12. Tarasevich, V. N. (2012). IK spektry osnovnyh klassov organicheskih soedinenij [IR spectra of the main classes of organic compounds]. M.: MGU, 54 s 13. Tarasevich, YU. I. (1981). Prirodnye sorbenty v processah ochistki vody [Natural sorbents in water purification processes.]. Kiev: Naukova dumka, 207 c. 14. Tarasevich, YU. I., Krupa, A. A., Bezorud'ko, O. V. (1981). Tekhno-logiya pro-izvodstva oleofil'nogo adsorbenta na osnove vspuchennogo perlita dlya ochistki vody ot nefti [Technology of production of oleophilic adsorbent based on expand-ed perlite for water purification from oil], Himiya i tekhnologiya vody, t.3. №2. С.23–25 15. Yudakov, A. A., Zubec, V. N. (1998). Teoriya i praktika polucheniya i primeneniya gidrofobnyh materialov [Theory and practice of obtaining and using hydrophobic materials]. Vladivostok: Dal'-nauka, 182 s.


Abstract The problem of utilization of hard domestic and industrial wastes is considered in the industrial region of Donbassa. As a result of generalization of foreign experience in the field of handling wastes and comparison with existent regional terms a necessity and possibility of creation of the special industry is grounded are sectors with handlings wastes. His potential efficiency is shown both in ecological and in economic aspects: in the field of domestic wastes only 30% their volume subject a burial place, and remaining part is processed or as the second resources a to 1 milliard of roubles goes a cost back into an economic turn. In the field of industrial wastes possibility of creation of slag is lye of a build industry, based exceptionally on local industrial wastes for the production of build goods the cost of ten of milliards of roubles is shown.
Key words: hard domestic and industrial wastes, utilization, ecological safety, second raw material
References: 1. Artamonova, A. V., Voronin, K. M., (2011). Shlakoschelochnye vyazhuschie na osnove domennyh granulirovannyh shlakov centrobezhno-udarnogo izmel'cheniya [Slag-alkaline drawing based on blast-furnace granulated slag of centrifugal-impact grinding], Cement i ego primenenie, iyul'-avgust , pp.108–113. 2. Gricenko, A. V. ,Korin'ko, I. V., Turenko, A. N. (ed.) (2005). Tehnologicheskie osnovy promyshlennoj pererabotki othodov megapolisa [Technological bases of industrial processing of a waste of a megacity], Har'kov: HNADU, 340 p. 3. «Vtorichnye resursy», available at: (data obrascheniya 20.03 2017) 4. Dvorkin, L. I., Pashkov, I. A. (1989). Stroitel'nye materialy iz othodov promyshlennosti [Building materials from industrial waste]. K.: Vyscha shkola. 340 p. 5..Dvorkin L.I.,Dvorkin O.L.(2007). Stroitel'nye materialy iz othodov promyshlennosti. [Building materials from industrial waste], K.: Vyscha shkola, 189 p. 6.Drozd, G. Ya.(2017). Razvitie sektora obrascheniya s tverdymi bytovymi othodami na Luganschine – nastoyatel'naya neobhodimost [The development of the solid waste management sector in Lugansk region is an urgent necessity], Sbornik nauchnyh trudov Donbasskogo gosudarstvennogo tehnicheskogo universiteta, Vol.(48), pp. 16-28. 7. Drozd, G.Ya. , Pashutina, E. N., Davydov, S. I. (2014). Biotehnologicheskie voprosy utilizacii osadkov stochnyh vod [Biotechnological issues of sewage sludge utilization], Voda i `ekologiya: Problemy i resheniya, №2 (58), pp. 66–78 8. Zadorskij V.M. (2007). Po`ema o musore [Poem about the garbage], Ekologiya i zdorov'e cheloveka. Ohrana vozdushnogo i vodnogo bassejnov. Utilizaciya othodov». Har'kov, pp. 306–318. 9. TBO v Ukraine: potencial razvitiya. Scenarii razvitiya sektora s tverdymi bytovymi othodami.(2014) / Otchet IFG v Ukraine.-s.100. 10. «Eurowaste. Tupes of waste». available at: 11. Mikul'skij, V. G., Gorchakov, G. I., Kozlov, V. V, (ed.). ( 2002 ) Stroitel'nye materialy. Materialovedenie i tehnologiya. [Construction Materials. Material Science and Technology]. Moskva. 150 p. 12. SNiP 2.07.01-89* yavlyaetsya pereizdaniem SNiP 2.07.01-89 s izmeneniyami i dopolneniyami, utverzhdennymi postanovleniem Gosstroya SSSR ot 13 iyulya 1990 g. №61, prikazom Ministerstva arhitektury, stroitel'stva i zhilischno-kommunal'nogo hozyajstva Rossijskoj Federacii ot 23 dekabrya 1992 g. № 269, postanovleniem Gosstroya Rossii ot 25 avgusta 1993 g. №18-32. 13. Svalki v Ukraine po ploschadi dostigli territorii Chernogorii, available at:: 14. Cherepanov, K.A., Chernysh G.I., Dinel't V.M., Suharev Yu.I. (1994)..Utilizaciya vtorichnyh material'nyh resursov v metallurgii [Utilization of secondary material resources in metallurgy]. M.: Metallurgiya, 219 p. 15.Hobotova, E.B, Kalmykova Yu.S.( 2012). `Ekologo-himicheskoe obosnovanie utilizacii otval'nyh domennyh shlakov v proizvodstve vyazhuschih materialov [Ecological and chemical rationale for the utilization of blast furnace slags in the production of binders], Ekologicheskaya himiya, 21(1), pp. 27–37.

Cvetkova L. I., Kopina G. I., Makarova S. V., Byrashnikova T. N.ECOLOGICAL CULTURE AND ENVIRONMENTAL EDUCATION

The article is devoted to the analysis of the reasons of inefficiency of ecological education in technical universities. It is shown that the ecology and applied environmental disciplines are different objects. Ecology is a basic discipline which must be teach regardless of the student’s education profile. Special disciplines, such as environmental protection, environmental safety, rational nature management need to be teach according to a specialty profile. The combination of these subjects in one course leads to a decline in the quality of education.
Key words: ecological education, ecology, environmental protection, environmental safety, quality of education.
References: 1. Bogdanov, N. I. (2008). Biologicheskie osnovyi predotvrascheniya «tsveteniya» Penzenskogo vodohranilischa sinezelenyimi vodoroslyami [Biological basis for preventing the water blooming of the Penza reservoir with blue-green algae]. Penza: RIO PGHSA, 76 p. 2. Bulon, V. V. (2008). O knige N. I. Bogdanova «Biologicheskie osnovyi predotvrasche-niya «tsveteniya» Penzenskogo vodohranilischa sinezelenyimi vodoroslyami [About the book of N. I. Bogdanov «Biological basis for preventing water blooming of the Penza reservoir with blue-green algae»]. SPb: Lemma, 17 p. 3. Vinberg, G. G. (1960). Pervichnaya produktsiya vodoemov [Primary production of reservoirs]. Minsk: Izd-vo AN BSSR, 329 p. 4. Guseva, K. A. (1952). «Tsvetenie vodyi, ego prichinyi, prognoz i meryi borbyi s nim» [Water blooming, its causes, prognosis and measures to combat it]. Tr. Vses. Gidrob. Ob-va, 4, pp. 17–31. 5. (1995). Diplom pobeditelyu konkursa uchebnikov po ehkologii dlya tekhnicheskih napravlenij i special'nostej [Diploma to the winner of the contest of textbooks on ecology for technical directions and specialties]. Prikaz Goskomvuza Rossii ot 25.07.1995. M.: Goskomvuz, 2 p. 6. (1999). Diplom I stepeni za uchebnik dlya tekhnicheskih vuzov pod red. L. I. Tsvetkovoj konkurs na luchshee izdanie v oblasti delovoj uchebnoj i nauchnoj literatury [Diploma I degree for a textbook for technical universities under the editorship of. L. I. Tsvetkova competition for the best publication in the field of business educational and scientific literature.]. M.: «Dana 99», 1 p. 7. (2000). Direktiva Evropejskogo Parlamenta i Soveta Evropejskogo Soyuza № 2000/60/ES [Directive of the European Parliament and of the Council of the European Union No. 2000/60 /EC.] 8. (1992). Zakon RSFSR «Ob ohrane okruzhayushchej prirodnoj sredy» ot 19.12.1991. [Law of the RSFSR «On Environmental Protection» of 19.12.1991.]. M., Respublika, 63 p. 9. Lavrenteva, G. M. (1977). Fitoplankton vodohranilisch Volzhskogo kaskada. Izv. Gos. nauchno-issl. in-ta ozern. i rechnogo ryibn. hoz-va. [Phytoplankton of the reservoirs of the Volga cascade] L., pp. 114–165. 10. Medvedev, D. A. (2016). Prioritetnyie proektyi. [Priority projects], Rossiyskaya gazeta, no. 250 (7118). 11. Odum, Yu. (1986). Ekologiya. 1 tom [Ecology. 1 volume]. M.: Mir. 329 p. 12. (1995). Prikaz Goskomvuza Rossii № 1091. [Order of the State Committee of the Russian Federation for Higher Education No. 1091]. 13. Reshenie XI s`ezda GBO RAN [Decision of the XI Congress of the Hydrobiological Society of the Russian Academy of Sciences]. 14. Rossolimo, L. L. (1977). Izmenenie limnicheskih ekosistem pod vozdeystviem antropogennogo faktora [Change in liminal ecosystems under the influence of anthropogenic factor]. M.: Nauka. 143 p. 15. (2002). Sbornik rekomendacij Hel'sinskoj komissii [Collection of recommendations of the Helsinki Commission]. SPb., pp. 240–252. 16. Sirenko, A. A. (1978). «Tsvetenie» vodyi i evtrofirovanie [Water blooming and eutrophication]. Kiev: Nauk. Dumka, 232 p. 17. (2002). Federal'nyj Zakon «Ob ohrane okruzhayushchej sredy» [Federal Law «On Envi-ronmental Protection»] №7-FZ ot 10.01.2002. 18. Rossijskaya Federaciya. Federal'nyj zakon (2012). «Ob obrazovanii v Rossijskoj Federacii» [Federal Law «On Education in the Russian Federation»] № 273-FZ ot 29.12.2012. 19. (2013). Federal'nyj Zakon «O vnesenii izmenenij v otdel'nye zakonodatel'nye akty RF i priznanii utrativshimi silu zakonodatel'nyh aktov (otdel'nyh polozhenij zakonodatel'nyh aktov) RF v svyazi s prinyatiem Federal'nogo zakona "Ob obrazovanii v RF"» [The Federal Law "On Amendments to Certain Legislative Acts of the Russian Federation and the Repeal of Legislative Acts (Certain Provisions of Legislative Acts) of the Russian Federation in Connection with the Adoption of the Federal Law "On Education in the Russian Federation"] № 185-FZ ot 02.07.2013. 20. (2014). Federal'nyj Zakon «O vnesenii izmenenij v Federal'nyj zakon "Ob ohrane okruzhay-ushchej sredy" i otdel'nye zakonodatel'nye akty Rossijskoj Federacii» [Federal Law "On Amendments to the Federal Law" On Environmental Protection "and Certain Legislative Acts of the Russian Federation"] № 219-FZ ot 21.07.2014). 21. (2015). Federal'nyj Zakon «O vnesenii izmenenij v Federal'nyj zakon "Ob othodah pro-izvodstva i potrebleniya", otdel'nye zakonodatel'nye akty Rossijskoj Federacii i priznanii utrativshimi silu otdel'nyh zakonodatel'nyh aktov (polozhenij zakonodatel'nyh aktov) Rossijskoj Federacii» [The Federal Law "On Amendments to the Federal Law "On Production and Consumption Waste", certain legislative acts of the Russian Federation and the recognition of certain legislative acts (provisions of legislative acts) of the Russian Federation as invalid"]№ 458-FZ ot 29.12.2015. 22. Fedorov, V. D. (1979) O metodah izucheniya fitoplanktona i ego aktivnosti. [On the methods of studying phytoplankton and its activity]. M.: Izd-vo MGU, 166 p. 23. Tsvetkova, L. I. (ed.) (1999). Ekologiya [Ecology]. 1st ed. SPb.: Himizdat; M.: ASV, 488 p. 24. Tsvetkova, L. I. (ed.) (2001). Ekologiya [Ecology]. 2nd ed. Himizdat; M.: ASV. 552 p. 25. Tsvetkova, L. I. (ed.) (2012). Ekologiya [Ecology]. 3d ed. SPb.: OOO «Novyiy zhurnal». 452 p. 26. Yagodin, G. A. (1995). Nekotorye aspekty ehkologicheskogo obrazovaniya v shkole [Some aspects of environmental education in school]. Razvitie nepreryvnogo ehkologicheskogo obrazovaniya. M.: MNEHPH, pp. 26–29. 27. Hutchinson, G. T. (1948). Circular causal system in ecology. Ann N. J. Acad. Sci., 50, pp. 221–246. 28. Schwimmer, D., Schwimmer, M. (1964) Algae and medicine. Algae and man, ed. Jackson D.T.N.W. New York: Plenum Press. 325 p. 29. Vollenweider, R. A. (1976). Advances in Defining Loading Levels for Phosphorus in Lake Eutrophication. Mat. Inst. Ital. Hydrobiol., (33). pp. 53–83. 30. Vollenweider, R. A. (1979). The nutrient Loading concept as Basic Manipulation of the Eutroph-ication of Lake and Reservoirs. Z.F. Wasser Forsc, 12 (2). p. 45–56. 31. Vollenweider, R. A. (1980). The Loading concept as Basic for controlling Eutrophication Philos-ophy and Preliminary Results of OECD Program on Eutrophication. Prog. Wat., 12. p. 5–38.


Abstract The article describes the developed technological solutions and technical means of hydrodynamic wave and reagent splitting of water intake wells aimed at increasing (restoring) production rates. The results of the implementation of these intensification methods of production in different regions of the Russian Federation are presented.
Key words: water supply well, flow rate, intensification, hydrodynamic, cavitation, vibrator, pump, acid.
References: 1. Dyblenko, V. P., Kamalov, R. N., SHariffulin, R. YA., Tufanov, I. A. (2000). Povyshenie produktivnosti i reanimaciya skvazhin s primeneniem vibrovolnovogo vozdejstviya. M.: Nedra, 381 s. 2. Ibragimov, L. H., Mishchenko, I. T., CHeloyanc, D. K. (2000). Intensifikaciya dobychi nefti. M.: Nauka, 414 3. Gadiev, S. M. Ispol'zovanie vibracii v dobyche nefti. M., «Nedra», 1977, 159 s. 4. Ibragimov, L. H., Ibragimov, H. I., Iriphanov, R. D., Mishchenko, I. T., Rublev, A. B., CHeloyanc, D. K (1999). «Metody i tekhnologii intensifikacii dobychi nefti». Dostizheniya i sovremennye problemy razvitiya nauki v Dagestane. Mahachkala, S. 297–296. 5. Rublev, A. B. (2005). Razrabotka i issledovanie tekhnicheskih i tekhnologicheskih reshenij intensifikacii dobychi nefti pri vtorichnom vskrytii i obrabotke prizabojnoj zony plasta (na primere Samotlorskogo mestorozhdeniya). kand. tekhnich. nauk. Tyumen', 172 s. 6. Holpanov, L. P., Zaporozhec, E. P., Zibert, G. K., Kashchickij, YU. A. (1998). Matematicheskoe modelirovanie nelinejnyh termogidrogazodinamicheskih processov v mnogokomponentnyh strujnyh techeniyah. M.: Nauka, 320 s. 7. Pilipenko, V. V. (1980). «K opredeleniyu chastot kolebanij davleniya, sozdavaemyh kavitacionnym generatorom». Dinamika nasosnyh sistem. Sb. Kiev: Nauk. dumka,. S.127–131. 8. Pilipenko, V. V. (1981). «K opredeleniyu amplitud kolebanij davleniya, sozdavaemyh kavitacionnym generatorom». Matematicheskie modeli rabochih processov v gidropnevmosistemah. Kiev: Nauk. dumka, S.18–24. 9. Omel'yanyuk, M. V. (2004). Razrabotka tekhnologii gidrodinamicheskoj kavitacionnoj ochistki trub ot otlozhenij pri remonte skvazhin. kand. tekhn. nauk. Krasnodar, 214 s. 10. Omel'yanyuk, M. V. (2009). «Povyshenie ehffektivnosti ochistki nasosno-kompressornyh trub ot otlozhenij solej s estestvennymi radionuklidami», Neftepromyslovoe delo, № 6,. S. 34–37. 11. Omel'yanyuk, M. V. (2010). «Kavitacionnye tekhnologii v neftegazovom dele», Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, № 1, S. 29–33. 12. Omel'yanyuk, M. V. (2011). «Gidravlicheskie generatory kolebanij v neftegazovom dele», Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, № 3, s.54–60. 13. Omel'yanyuk, M. V., Pahlyan, I. A., Strujnaya ustanovka dlya promyvki skvazhin. RF, pat. № 2561220. 14. Omel'yanyuk, M. V., Pahlyan, I. A., Rotacionnyj gidravlicheskij vibrator. RF, pat. № 2542015. 15. Omel'yanyuk, M. V., Pahlyan, I. A., (2014). Sposob obrabotki priskvazhinnoj zony plasta i ustrojstva dlya ego osushchestvleniya. RF, pat. № 2542016 16. Pahlyan, I. A., Omel'yanyuk, M. V., Osmanov, S. V., Bitiev, I. I. (2014). Baza dannyh «Sovremennye metody intensifikacii dobychi s primeneniem ehzhektornyh tekhnologij». RF, pat. № 2015620375 17. Omel'yanyuk, M. V., Baza dannyh «Razrabotka kavitacionnyh ustrojstv tekhnologicheskogo naznacheniya. RF, pat. № 2015621681 18. Omel'yanyuk, M. V. (2008). Povyshenie ehffektivnosti kavitacionnoj reanimacii skvazhin. Neftepromyslovoe delo, № 5, S. 35–41. 19. Omel'yanyuk M.V. (2010). Intensifikaciya raboty i reanimaciya vodozabornyh skvazhin, Neftepromyslovoe delo, № 8, s. 22–25. 20. Omel'yanyuk, M. V. (2012). EHffektivnye tekhnologii reanimacii skvazhin. Neft'. Gaz. Novacii, № 1 (156), S. 58–65. 21. Omel'yanyuk, M. V., Pahlyan, I. A. (2014). Povyshenie ehffektivnosti osvoeniya i ehkspluatacii dobyvayushchih skvazhin za schet primeneniya impul'sno-udarnogo, kavitacionnogo vozdejstviya na priskvazhinnuyu zonu produktivnogo plasta. Neftepromyslovoe delo, № 11. S. 19–23. 22. Omel'yanyuk, M. V. (2009). Kavitacionnaya stojkost' nasadkov gidrodinamicheskih ustanovok, Neftepromyslovoe delo, №5. S. 51–54. 23. Omel'yanyuk, M. V., Pahlyan, I. A., Bitiev, I. I., Osmanov, S. V. (2014). Sovremennye metody fiziko-himicheskoj intensifikacii dobychi pri remonte skvazhin. RF, pat. № 2015620593 24. Omel'yanyuk, M. V. (2015). Tekhnologii remonta i vosstanovleniya vodozabornyh skvazhin. Vodosnabzhenie i sanitarnaya tekhnika, № 3. S. 25–32.




In reforming the energy sector, the consumer expenses optimization problem is relevant. The percentage of renewable energy in the total electricity production will increase steadily. For the production of renewable energy, it is suggested the biogas method of recycling. Purpose: to propose a model of energy production based on the processing of industrial and agricultural wastes through biogas technology and vermitechnology. To calculate the saving effect when using the load balancing method. To enhance the electricity transmission possibilities of the system. Methods: an experimental stand was created. Biogas method and vermitechnology section were combined into one unit. It was evaluated the effect of increasing the efficiency of electricity production and the possibility of using the remaining capacity was estimated. Results: the alignment of the enterprises energy consumption graph allows to increase the efficiency of electricity production in absolute terms by 4% and relative by 12.3%. The effect is achieved due to the redistribution of the energy consumed during the day by reducing downtime of the generating capacity. It is shown that by controlling the consumption of electrical energy it is possible to reduce the intake of fossil fuels for energy generation. Practical relevance: it is expected that the new combined method of using biogas technology and vermitechnology with the aim of additional energy obtaining will significantly reduce the consumption of fossil fuels to generate electricity and increase efficiency. Furthermore, an additional product of this collaborative method of waste recycling is biohumus – a valuable organic fertilizer.
Key words: Keywords: energy performance, coefficient of efficiency, electrical load alignment, renewable energy, biogas-vermitechnology.
1. (2013). Postanovlenie Pravitel’stva RF ot 28 maya 2013 g. № 449 «O mekhanizme stimulirovaniya ispol’zovaniya vozobnovlyaemyh istochnikov ehnergii na optovom rynke ehlektricheskoj ehnergii i moshchnosti» [The RF Government resolution of May 28, 2013 №449 “About the mechanism of stimulation of using renewable energy sources in the wholesale market of electric energy and power”] (in Russian).
2. Katmakov, P. S., Bushov, A. V., Gavrilenko V. P. (2008). Biotekhnologiya v zhivotnovodstve [Biotechnology in livestock farming]. Ul’yanovsk: GSKHA, 154 p. (in Russian).
3. Luk’yanov, A. N. (2013). Al’ternativnaya ehnergiya Rossii – biogaz. [Alternative energy of Russia is biogas]. Agrobiznes: ehkonomika – oborudovanie – tekhnologii, № 10, pp. 60–69 (in Russian).
4. Guo, M., Song, W., Buhain, J. (2015). Bioenergy and biofuels: history, status, and perspective. Renewable and Sustainable Energy Reviews, vol. 42, pp. 712–725.
5. Zhang, T., Yang, Y., Xie, D. (2015). Insights into the production potential and trends of China’s rural biogas. International Journal of Energy Research, vol. 39, is. 8, pp. 1068–1082.
6. Bond, T., Templeton, M. R. (2011). History and future of domestic biogas plants in the developing world. Energy for Sustainable Development, vol. 15, is. 4, pp. 347–354.
7. Pipatmanomai, S., Kaewluan, S., Vitidsant, T. (2009). Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Applied Energy, vol. 86, is. 5, pp. 669–674.
8. Moulod, M., Jalali, A., Asmatulu, R. (2016). Biogas derived from municipal solid waste to generate electrical power through solid oxide fuel cells. International Journal of Energy Research, 40 (15), pp. 2091–2104.
9. Surendra, K. C., Takara, D., Hashimoto, A. G., Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, vol. 31, p. 846–859.
10. Shomin, A. A. (2002). Biogaz na sel’skom podvor’e [Biogas on a farmstead]. Balakleya: Informacionno-izdatel’skaya kompaniya «Balaklіjshchina», 68 p. (in Russian).
11. Kovshov, S. V., Skam’in, A. N. (2017). Perspektivnaya metodika polucheniya biogaza i biogumusa. Eksperimental’nyj stend [Promising methods of obtaining of biogas and vermicompost. Experimental stand]. Water and Ecology, №1, pp. 54–62 (in Russian).
12. Kolesnik, Yu. N., Ven’gin, K. A. (2006). Povyshenie ehffektivnosti upravleniya generatorami ehlektroehnergii potrebitelej v rynochnyh usloviyah funkcionirovaniya. Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta im. P. O. Suhogo, № 2 (25), pp. 60–65 (in Russian).
13. Astahov, Yu. N. (1983). Funkcional’nye vozmozhnosti nakopitelej ehlektricheskoj ehnergii v ehnergosistemah [The functionality of the electric energy storages in power systems]. Elektrichestvo, № 4, pp. 1–7 (in Russian).
14. Hronusov, G. S. (1998). Formirovanie ehffektivnyh rezhimov ehlektropotrebleniya promyshlennyh predpriyatij [The formation of efficient modes of energy consumption at industrial enterprises]. Ekaterinburg: UGGGA, 340 p. (in Russian).
15. Skam’in, A. N., Bragin, A. A. (2012). Regulirovanie rezhimami ehlektropotrebleniya [Control by the power consumption modes] V sb.: Materialy IV Mezhdunarodnoj nauchno-prakticheskoj konferencii «Dostizheniya molodyh uchenyh v razvitii innovacionnyh processov v ehkonomike, nauke, obrazovanii», Bryansk: Izdatel’stvo BGTU, pp. 99–100 (in Russian).


At present, the problem of restoration and purification of water bodies of anthropogenically transformed territories is becoming more and more urgent. In this paper the changes occurring in man-made water reservoirs after the cessation of intensive exploitation are considered. As objects of research, two significant reservoirs of the Vasilievska lakes system of the Samara region – Lake Otstoinik and lake Shlamonakopitel. The degree of transformation and its character was assessed based on the peculiarities of taxonomic rearrangements, changes in the indicators of quantitative development, the structure of the dominant complex, and the species diversity of phytoplankton for more than 20 years. The predominance of positive signs, suggested the existence of high capacity of ecosystems to self-repair, even in conditions of encumbrance of agrarno-cultural load. The results of the research can serve as a basis for the development of methods for reclamation and restoration of systems that survived the technogenic press.
Key words: phytoplankton, technogenic reserv-oirs, ecosystem transformation, eutrophication.
1. Afanas’eva, A. L.( 2000). Vidovoj sostav i biomassa letnego fitoplanktona oz. Seliger [Species composition and biomass of summer phytoplankton of the lake Seliger], Abstracts of V all-Russia conference on aquatic plants “Hydrobotanics-2000”, Borok, p.7. (in Russian).
2. Barinova, S. S., Medvedeva, L. A. (1996). Atlas vodoroslej-indikatorov saprobnosti (Rossijskij Dal’nij Vostok) [Atlas of algae-the indicators of saprobity (Russian far East)], Dalnauka, Vladivostok, 364 p. (in Russian).
3. Barinova, S. S., Medvedeva, L. A., And Anisimova, O. V. (2006). Bioraznoobrazie vodoroslej-indikatorov okruzhajushhej sredy [Biodiversity of algae-indicators of the environment], Tel Aviv, 498 p. (in Russian).
4. Hollerbach, M. M., Kosinskaya, E. K., And Polyanskii, V. I. (1953). Sinezelenye vodorosli. Opredelitel’ presnovodnyh vodoroslej SSSR. Vyp. 2. [Blue-green algae. The key to freshwater algae of the USSR. Vol. 2.]. M: Soviet science, p. 651. (in Russian).
5. Genkal S. I. (1992). Atlas diatomovyh vodoroslej planktona reki Volgi [Atlas of diatoms of the plankton of the Volga river]. S-Pb., 128 p. (in Russian).
6. Zharikov, V. V. (ed) (2009) Protisty i bakterii ozer Samarskoj oblasti [Protists and bacteria of lakes of the Samara region], Kassandra, Tolyatti, 240 p. (in Russian).
7. Kiselev I. A. (1954). Opredelitel’ presnovodnyh vodoroslej SSSR. Vyp. 6. Pirofitovye vodorosli [The key to freshwater algae of the USSR. Vol. 6. Perogitive algae]. M., 212 p. (in Russian).
8. Krivina E. S., Tarasova N. (2015). Fitoplankton urbanizirovannogo vodoema (na primere oz. Vos’merka, g. Tol’jatti, Samarskaja oblast’) II. Kolichestvennoe razvitie, dominirujushhie vidy ocenka kachestva vody [Phytoplankton urbanized of the reservoir (for example oz. Eight, Tolyatti, Samara region) II. Quantitative development, the dominant species assessment of water quality] Izv. Samara scientific. center of RAS, Vol. 17, No. 4, pp. 203-209. (in Russian).
9. Kuzmin, G. V. (1975). Fitoplankton. Vidovoj sostav i obilie [Phytoplankton. Species composition and abundance], Methods of study of biogeocenoses of inland water bodies, Nauka, Moscow, pp. 73-87. (in Russian).
10. Litinsky, J. B. (1960). Nekotorye voprosy geomorfologii ozer Karel’skogo regiona [Some aspects of geomorphology of lakes in the Karelian region], Materials for hydrology (Limnology) of the Republic of Karelia, Petrozavodsk. pp. 10-59. (in Russian).
11. Matvienko, A. M. (1954). Opredelitel’ presnovodnyh vodoroslej SSSR. Vyp. 3. Zolotistye vodorosli [The key to freshwater algae of the USSR. Vol. 3. Golden algae], Sovetskaya Nauka, Moscow, 188 p. (in Russian).
12. Mordecai-Boltovskii, F. D. (ed.). (1975). Metodika izuchenija biogeocenozov vnutrennih vodoemov [The method of studying biogeocenoses of inland water bodies], Moscow, 240 p. (in Russian).
13. Nomokonova, V. I., Vykhristyuk, L. A., Tarasova, N. G. (2001). Troficheskij status Vasil’evskih ozjor v okrestnostjah g. Tol’jatti [Trophic status Vasilevsky lakes in the vicinity of Togliatti] Izv. Samara scientific. center of RAS, Vol. 3, No. 2, pp. 274-283. (in Russian).
14. Pavlova, O. A. (2000). Vidovoj sostav fitoplanktona i ocenka saprobnosti treh ozer urbanizirovannogo landshafta [Species composition of phytoplankton and assessment of saprobity of the three lakes in the urbanized landscape], Abstracts of V all-Russia conference on aquatic plants “Hydrobotanics-2000”, Borok, pp.65–66. (in Russian).
15. Pimenov, A. A. (EDS) (2012). Materialy ocenki vozdejstvija na okruzhajushhuju sredu pri realizacii namechaemoj dejatel’nosti: stroitel’stvo ochistnyh sooruzhenij smeshannogo potoka stochnyh vod predprijatij Severnogo promuzla (SPU) g. Tol’jatti v rajone regulirujushhej emkosti [The materials assess the impact on the environment during implementation of the proposed activity: construction of treatment plants mixed wastewater stream enterprises of the Northern promysla (SPU) the city of Togliatti in the area of regulatory capacity], Samara State Technical University, Samara, p. 10. (in Russian).
16. Sirenko, L. A., Gavrilenko, M. J. (1978). «Cvetenie» vody i jevftrofirovanie [“Flowering” of water and eutrophication], Naukova Dumka, Kiev, 231 p. (in Russian).
17. Startsev, N. A., Okhapkin A. G. (2003) Sostav i struktura fitoplanktona nekotoryh pojmennyh ozer kul’turnogo landshafta (na primere g. Nizhnego Novgoroda) [Composition and structure of phytoplankton of some lakes in the floodplain of the cultural landscape (on the example of Nizhny Novgorod], Biology of inland waters, No. 4. pp. 35–42. (in Russian).
18. Tarasova, N. G. (2007) Fitoplankton Verhnego pruda Botanicheskogo sada: taksonomicheskij sostav i jekologo-geograficheskaja harakteristika [Phytoplankton of the Upper pond of the Botanical garden: the taxonomic composition and ecological and geographical characteristics], Samarskaya Luka: problems of regional and global ecology, Vol. 16, No. 1–2 (19–20), pp. 156–166. (in Russian).
19. Trifonova, I. S. (1990) Ekologija i sukcessija ozernogo fitoplanktona [The Ecology and succession of lake phytoplankton]. Nauka, Leningrad, 183 p. (in Russian).
20. Unificirovannye metody issledovaniya kachestva vod. Atlas saprobnyh organizmov (1977). [Unified methods of research of water quality. Atlas saprobic organisms]. M.: Nauka, 277 p. Ettl, H. (1983). Chlorophyta. Phytomonadina. Susswasserflora von Mitteleuropa. Jena, Bd. 9. 807 p.
21. Ettl H., Gartner G. (1983). Chlorophyta II. Tetrasporales, Chlorococcales, Gloedendrales Susswasserflora von Mitteleuropa. Jena, Bd. 10. 436 p.
22. Ettl H., Zerloff G., Heynig H., Mollenhauer D. (1990). Dinophyceae (Dinophlagellida) Susswasserflora von Mitteleuropa. Jena, Bd. 6. 448 p.
23. Komarek J., Anagnostidi K. Cyanoprocariota. (2000). Teil 1. Chroococcales Susswasserflora von Mitteleuropa. Jena: Stuttgard, 2000. 643 p.
24. Sládeček, V. (1973) System of water quality from the biological point of view. Erebn. der Limnol. Bd. 7, pp. 1-218.
25. Sládeček, V. (1986) Diatoms as indicators of organic pollution. Acta Hydrochim. Hydrobiol. V. 14, No. 5. pp. 555-566.
26. Reynolds, C. S. (2006) The ecology of phytoplankton. L.: Cambridge Univ. Press. 536 p. Wegl, R. (1983).Index für die Limnosaprobität. Wasser und Abwasser. 1983. Bd 26. Pp. 1–175.


The article provides a complex assessment of the ecological condition of waters Murinsky Creek within the city of St. Petersburg. The following methods of assessment the state of water bodies were used: biotesting of water samples, hydrochemical methods of analysis (spectrophotometry, atomic emission spectrometry, liquid chromatography) and aerial monitoring. For the processing of empirical data were used mapping of the object of study. The combination of these research methods can be used for the environmental assessment of the degree of pollution of surface water bodies of different categories. Information on the status of surface water obtained in the study can be used to focus attention on pollution problems specific water bodies and watercourses. It may bring the time of the decision to conduct necessary environment protection events. This work was supported by the Scientific and Educational Center for the Collective Use of High-Tech Equipment "The Center for Collective Use" of the St. Petersburg Mining University, the Government of St. Petersburg and the President's Grant.
Key words: biotesting, hydrochemical methods of analysis, mapping, maximum permissible concentration, degree of contamination of water
1. (2016). «Vodnyj kodeks Rossijskoj Federacii» ot 03.06.2006 N 74-FZ (red. ot 31.10.2016) [“Water Code of the Russian Federation” of 03.06.2006 N 74-FZ (as amended on October 31, 2016)] (in Russian).
2. (2003). GN «Predel’no dopustimye koncentracii (PDK) himicheskih veshhestv v vode vodnyh ob’’ektov hozjajstvenno-pit’evogo i kul’turno-bytovogo vodopol’zovanija» [GN Hygienic standards «Maximum permissible concentration (MPC) of chemicals in water bodies of drinking and cultural household uses»] (in Russian).
3. (2012). GOST 31867-2012 «Voda pit’evaja. Opredelenie soderzhanija anionov metodom hromatografii i kapilljarnogo jelektroforeza» [«Drinking water. Determination of anions content by ion chromatography and capillary electrophoresis methods»] (in Russian).
4. (2012). GOST 31870-2012 «Voda pit’evaja. Opredelenie soderzhanija jelementov metodami atomnoj spektrometrii» [«Drinking water. Determination of the content of elements by atomic spectrometry»] (in Russian).
5. (2012). PND F 14.1:2:4.128-98 «Kolichestvennyj himicheskij analiz vod. Metodika izmerenij massovoj koncentracii nefteproduktov (NP) v probah prirodnyh (vkljuchaja morskie), pit’evyh i stochnyh vod fluorimetricheskim metodom na analizatore zhidkosti “FLJUORAT-02”» [«Quantitative chemical analysis of waters. Method for performing measurements of the mass concentration of petroleum products in samples of natural, drinking, waste water with a fluorimetric method on the Fluorat-02 liquid analyzer»] (in Russian).
6. (2002). PND F 14.1:2:4.182-02 (izd. 2010 goda) «Metodika izmerenij massovoj koncentracii fenolov (obshhih i letuchih) v probah prirodnyh, pit’evyh i stochnyh vod fluorimetricheskim metodom na analizatore zhidkosti “FLJUORAT-02”» [PND F 14.1:2:4.182-02 (2010 edition) “The method of measurement of the mass concentration of phenols in samples of natural, drinking and waste water with a fluorimetric method on the Fluorat-02 liquid analyzer»] (in Russian).
7. (2004). PND F T 14.1:2:4.10-2004 «Metodika opredelenija toksichnosti pit’evyh, prirodnyh i stochnyh vod, vodnyh vytjazhek iz pochv, osadkov stochnyh vod i othodov proizvodstva i potreblenija po izmeneniju opticheskoj plotnosti kul’tury vodorosli hlorella (Chlorella vulgaris Beijer)» [«Toxicological analysis methods. The method of determining the toxicity of drinking water and waste water, water extracts from soils, sewage sludge and waste of production and consumption on the change in optical density of the culture of algae (Chlorella vulgaris Beijer)»] (in Russian).
8. Pashkevich, M. A. (2014). Ocenka kachestva okruzhayushchej sredy s primeneniem malogabaritnyh bespilotnyh letatel’nyh apparatov [Estimation of quality of environment with the use of small pilotless aircrafts], Zapiski Gornogo institutа [Proceedings of the Mining Institute], vol. 204. pp. 272–275. (in Russian).
9. (2002). RD 52.24.643-2002 «Metod kompleksnoj ocenki stepeni zagrjaznennosti poverhnostnyh vod po gidrohimicheskim pokazateljam» [«The method of integrated assessment of the degree of contamination of surface water on hydrochemical indicators»] (in Russian).
10. Muravev, A. G. (ed.). (2011). Rukovodstvo po analizu vody. Pit’evaja i prirodnaja voda, pochvennye vytjazhki [A guide to water analysis. Drinking and natural water, soil extracts]. St. Petersburg: “Krismas+”, 264 p. (in Russian).
11. (2000). SanPiN «Gigienicheskie trebovanija k ohrane poverhnostnyh vod» [«Hygienic requirements for the protection of surface waters»] (in Russian).


This article provides information about the features of formation of surface sewage, the influence of various factors on the composition of the effluent to be allocated a combined sewage and rainwater, given the comparative characteristics of these effluents on regulatory materials and actual data for St. Petersburg and its suburbs. It is shown that the bulk of the pollution of suspended solids, oils, COD and BOD are rain sewers to surface runoff, and mineral salts - with drainage flow. An analysis of data on the work of modern sewage treatment plants surface waste waters as well as the results of studies on the effectiveness of the work of the various types of loading filters for water purification from petroleum products (foamed polyurethane, peat briquettes, graphite, aluminium silicate activated and activated carbons of different brands).The best results are obtained for the preliminary filter with foamed polyurethane boot, for second-stage filter – loading of activated aluminosilicate and sorption filters - activated carbon loading brands MAU. Based on the research, offered technological scheme of surface cleaning wastewater that achieves targeted technological indicators, in accordance with best available technology.
Key words: surface cleaning wastewater runoff, download filters, sorption filters.
1. (2017). Strategiya ehkologicheskoj bezopasnosti Rossijskoj Federacii na period do 2025 goda [Strategy of ecological safety of the Russian Federation for the period up to 2025]. Utverzhdena Ukazom Prezidenta Rossijskoj Federacii ot 19 aprelya 2017 goda №176.
2. Ministerstvo stroitel'stva i zhilishchno-kommunal'nogo hozyajstva Rossijskoj Federacii. (2015). Metodicheskoe posobie. Rekomendacii po raschetu sistem sbora, otvedeniya i ochistki poverhnostnogo stoka selitebnyh territorij, ploshchadok predpriyatij i opredeleniyu uslovij vypuska ego v vodnye ob"ekty [Recommendations for the calculation of systems for collecting, diversion and cleaning of surface runoff of residential areas, sites of enterprises and determining the conditions for its release into water bodies]. M., 2015.146 s.
3. SPbGASU. (1994). Opredelenie kolichestva i kachestva dozhdevogo i drenazhnogo stoka Sankt-Peterburga [Determination of the quantity and quality of rainwater and drainage flow in St. Petersburg]. Otchet po NIR. SPb, SPbGASU, 25 s.
4. Federal'noe agentstvo po tekhnicheskomu regulirovaniyu i metrologiii. (2015). Ochistka stochnyh vod poselenij, gorodskih okrugov s ispol'zovaniem centralizovannyh sistem vodootvedeniya. Informacionno-tekhnicheskij spravochnik po nailuchshim dostupnym tekhnologiyam ITS 10 [Wastewater treatment of settlements, urban districts using centralized water disposal systems. Information and technical reference book on the best available technologies of ITS 10]. M.: Byuro NDT, 377 s.
5. Sergeev, V. V., Papurin, N. M., Gotovcev, A. V. (2009). Ochistka stokov s inzhenernyh sooruzhenij[Wastewater treatment from engineering facilities]. EHkologiya proizvodstva, №10, s. 66–68.
6. GNC RF OAO «NII VODGEO». (2014). Rekomendacii po raschetu sistem sbora, otvedeniya i ochistki poverhnostnogo stoka s selitebnyh territorij, ploshchadok predpriyatij i opredeleniyu uslovij vypuska ego v vodnye obekty [Recommendations for the calculation of systems for collecting, diversion and cleaning of surface runoff from residential areas, sites of enterprises and determining the conditions for its release into water bodies]. Dopolneniya k SP 32.13330.2012. M. OAO «NIIVODGEO», 91 s.
7. Alekseev, M. I., Kurganov, A. M. (2002). Organizaciya otvedeniya poverhnostnogo (dozhdevogo i talogo) stoka s urbanizirovannyh territorij [The organization of surface (rain and thawed) run-off from urbanized areas]. M.: Izd-vo Associacii stroitel'nyh vuzov, 352 s.
8. Dikarevskij, V. S., Kurganov, A. M., Nechaev, A. P., Alekseev, M. I. (1990). Otvedenie i ochistka poverhnostnyh stochnyh vod [Removal and treatment of surface wastewater]. L.: Strojizdat, 224 s.
9. Pravitel'stvo RF. (2016). Postanovlenie № 1134 «O voprosah osushchestvleniya holodnogo vodosnabzheniya i vodootvedeniya» s izmeneniyami, kotorye vnosyatsya v akty Pravitel'stva Rossijskoj Federacii v sfere vodosnabzheniya i vodootvedeniya» [Decree No. 1134 "On issues of implementation of cold water supply and sanitation" with changes that are introduced in the acts of the Government of the Russian Federation in the field of water supply and sanitation"].
10. Alekseeva, I. V. (2016). Izmenenie zakonodatel'stva, reguliruyushchego sbros proizvodstvennyh stochnyh vod v vodnye ob"ekty cherez centralizovannye sistemy vodootvedeniya [Change in legislation regulating the discharge of industrial waste water into water bodies through centralized water disposal systems]. Voda Magazine, №9 (109), s.44–46.
11. Pravitel'stvo RF. (2015). Rasporyazhenie ot 08.07.2015 g. № 1316-p «O perechne zagryaznyayushchih veshchestv, v otnoshenii kotoryh primenyayutsya mery gosudarstvennogo regulirovaniya v oblasti ohrany okruzhayushchej sredy» ["On the list of pollutants subject to measures of state regulation in the field of environmental protection"].
12. Komitet po ehnergetike i inzhenernomu obespecheniyu Pravitel'stva SPb. (2012). Rasporyazhenie ot 08 noyabrya 2012 g. № 148 «Ob ustanovlenii normativov vodootvedeniya po sostavu stochnyh vod v centralizovannye sistemy vodootvedeniya Sankt-Peterburga» ["On the Establishment of Wastewater Management Norms for the Composition of Wastewater in the Centralized Sewage Systems of St. Petersburg"] .
13. GN Predel'no dopustimye koncentracii (PDK) himicheskih veshchestv v vode vodnyh ob"ektov hozyajstvenno-pit'evogo i kul'turno-bytovogo vodopol'zovaniya [Maximum permissible concentration (MPC) of chemicals in water in water bodies of domestic and drinking and cultural and domestic water use]. Gigienicheskie normativy.
14. Ministerstvo sel'skogo hozyajstva Rossijskoj Federacii. (2016). Prikaz ot 13.12.2016 № 552 «Ob utverzhdenii normativov kachestva vody vodnyh ob"ektov rybohozyajstvennogo znacheniya, v tom chisle normativov predel'no dopustimyh koncentracij vrednyh veshchestv v vodah vodnyh ob"ektov rybohozyajstvennogo znacheniya» ["On approval of water quality standards for water objects of fishery value, including standards for maximum permissible concentrations of harmful substances in the waters of water bodies of fishery importance"] (Zaregistrirovan v Minyuste Rossii 13.01.2017 № 45203)
15. Federal'nyj zakon № 219-FZ ot 21.07.2014 «O vnesenii izmenenij v Federal'nyj zakon “Ob ohrane okruzhayushchej sredy” i otdel'nye zakonodatel'nye akty Rossijskoj Federacii» [Federal Law No. 219-FZ of July 21, 2014 "On Amendments to the Federal Law" On Environmental Protection "and Certain Legislative Acts of the Russian Federation."].
16. Feofanov, YU. A. (2017). Ocenka ehffektivnosti ispol'zovaniya razlichnyh sorbcionnyh materialov dlya ochistki neftesoderzhashchih vod [Assessment of the effectiveness of the use of various sorption materials for cleaning oily waters]. Voda Magazine, №5(117), s. 42–46.
17. Tomson, A. EH., Naumova, G. V. (2009). Torf i produkty ego pererabotki [Peat and products of its processing]. Minsk: Belarus. Navuka, 328 s.
18. Mishukov, B. G. (1995). Ochistka poverhnostnogo stoka [Purification of surface runoff]. Vodosnabzhenie i sanitarnaya tekhnika, № 9, s. 3–4.

Fokina A. I., Olkova A. S., Budina D. V. , Skugoreva S. G., Beresneva E. V. , Darovskih L. V., Zykova Yu. N.A STUDY OF THE PEAT POTENTIAL AS A SORBENT OF CU (II) AND PB (II) IONS FROM AQUEOUS SOLUTIONS

We established that peat samples collected in the vicinity of Chistopol'e and Zengino villages (Kirov region, Russia) had high adsorbing and detoxing propertiep. At 20–1000 micromole/dm3 copper(II) and lead(II) ion concentration, the metals extraction (1:10 peat-to-solution ratio) proved to be 97% and higher. In all instances we managed to reduce the copper salts concentration to the levels below the maximum permissible concentration for potable water. We didn't derive any defi-nite mathematical model describing the adsorption process, however, the Freundlich equation de-scribed the obtained adsorption isotherms best. Bioassay, performed on three test subjects (Parame-cium caudatum, Ecolum biosensor, and Nostoc paludosum cyanobacteria), detected a decrease in the toxicity of copper acetate and lead acetate solutionp. Prior the purification, the solutions had pronounced toxic effect upon all the test subjectp. Upon contact of the solutions with the peat their toxicity dropped to acceptable levels in most casep. The suggested procedure, combining both the chemical and toxicological testing, could be used to evaluate the effectiveness of water purification techniquep.
Key words: peat, heavy metals, water solutions, toxicity
1. Anisimov, V. P. (2011). Vliyaniyе organicheskogo veshchestva na parametry selektivnoy sorbtsii kobalta i tsinka pochvami i vydelennymi iz nikh ilistymi fraktsiyami [Influence of organic substance on parameters of selective sorption of cobalt and zinc by soils and the oozy fractions allocated from them]. Pochvovedeniyе, № 6, pp. 675–684 (in Russian).
2. Belyak, A. A., Smirnov, A. D., Khodyrev, V. M. (2015). Otsenka vozmozhnosti ispolzovaniya tseolitsoderzhashchego trepela v sisteme ochistki livnevykh stokov [The assessment of possibility of use of zeolite containing bergmeal in system of cleaning of rainsd drains]. Water and Ecology, № 4, pp. 44–55 (in Russian).
3. Bogolitsyn, K. G., Boytsova, T. A. (2011). Osobennosti kompleksoobrazuyushchikh i sorbtsionnykh svoystv guminovykh kislot verkhovogo torfa Arkhangelskoy oblasti [Features of a complexformings and sorption properties of humic acids of riding peat of the Arkhangelsk region]. Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Estestvennyyе nauki, № 3, pp. 132–139 (in Russian).
4. Buko, Z. V., Likhacheva, A. V. (2015). Issledovaniyе sorbtsionnykh svoystv negidrolizuyеmogo ostatka torfa [Research of sorption properties of rest not hydrolyzed peat]. Trudy BGTU. Khimiya, tekhnologiya organicheskikh veshchestv i biotekhnologiya, № 4 (177), pp. 267–271 (in Russian).
5. Gavrilov, P. V., Kanarskaya, Z. A. (2015). Adsorbtsionnyе svoystva torfa i produktov ego pererabotki [The adsorptive properties of peat and products of its processing]. Vestnik Kazanskogo tekhnologicheskogo universiteta, T. 18. № 2, pp. 422–427.
6. Glavnyj gosudarstvennyj sanitarnyj vrach RF. (2003). GN Predelno dopustimyyе kontsentratsii (PDK) khimicheskikh veshchestv v vode vodnykh obyеktov khozyaystvenno-pityеvogo i kulturno-bytovogo vodopolzovaniya [HYGIENIC STANDARD (2003). The Maximum Permissible Concentrations (MPC) of chemicals in water, water objects of economic and drinking and cultural and community water use], 213 p. (in Russian).
7. (1983). GOST 17644-83. Torf. Metody otbora prob iz zalezhi i obrabotki ikh dlya laboratornykh ispytaniy [STATE STANDARD 17644-83. The Peat. Sampling methods from a Tests and their processing for laboratory researchep] (in Russian).
8. Danilin, I. A. (2009). Opyt primeneniya eykhornii (Eichhornia crassipes) dlya snizheniya kontsentratsii tyazhelykh metallov v dozhdevykh stochnykh vodakh [Experience of application of an eihhornia (Eichhornia crassipes) for decrease in concentration of metals in rain sewage]. Water and Ecology, № 2, p. 60–68 (in Russian).
9. Dmitriyеva, E. D., Goryacheva, A. A., Perelomov, L. V., Syundyukova, K. V., Leontyеva, M. M. (2015). Sorbtsionnaya sposobnost guminovykh veshchestv torfov razlichnogo proiskhozhdeniya Tulskoy oblasti po otnosheniyu k ionam svintsa(II) [Sorption ability of humic substances of various origin the peat of Tula region in relation ions lead(II)]. Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennyyе nauki, Vyp. 4, p. 215–219. (in Russian).
10. Dremicheva, E. P. (2017). Izucheniyе kinetiki sorbtsii ionov medi(II) i zheleza(II) iz stoch-nykh vod torfom [Studying of kinetics of ions sorption of copper(II) and iron(II) of sewage peat]. Voda: khimiya i ekologiya, № 1, p. 61–66 (in Russian).
11. Zubkova, K. A., Gonina, E. P., Shikhova, L. N., Lisitsyn, E. M. (2016). Analiz klimaticheskikh stadiy formirovaniya bolot po botanicheskomu ostavu torfa [The analysis of climatic stages of formation a bogs on a botanical composition of peat]. Vestnik Orenburgskogo gosudarstvennogo universiteta, № 5 (193), p. 57–64 (in Russian).
12. Kim, A. N., Kolodkin, I. V., Sharavii, Ch. O. (2006). Issledovaniyе fiziko-khimicheskikh i tekhnologicheskikh svoystv filtrovalno-sorbtsionnogo materiala tseolita Kholinskogo me-storozhdeniya Buryatii [Research of physical, chemical and technological properties of filtering and sorption material of zeolite of the Holinsky field of Buryatia]. Water and Ecology, № 1 (26), p. 9–15 (in Russian).
13. Kim, A. N., Mikhaylov, A. V., Prodous, O. A., Bondarchuk, A. P., Rozova, E. E. (2015). Filtr s torfyanoy zagruzkoy. Patent na poleznuyu model [The filter with peat loading. The patent for the modal]. RUS 154656 (in Russian).
14. Kovalenko, N. P., Ivko, V. R. (1999). O protivofiltratsionnykh ekranakh iz torfa [About antifiltrational screens from peat]. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal, № 2–3, p. 94–99. (in Russian).
15. Larionov, N. P., Bogolitsyn, K. G., Bogdanov M. V., Kuznetsova I. A. (2008). Kharakteristika sorbtsionnykh svoystv verkhovogo torfa po otnosheniyu k d i p-metallam [The characteristic of sorption properties of riding peat in relation to d and p-metals]. Khimiya rastitelnogo syrya, № 4, p. 147–152. (in Russian).
16. Lozinskaya, E. F., Mitrakova, T. N., Zhilyayеva, N. A. (2013). Izucheniyе sorbtsionnykh svoystv prirodnykh sorbentov po otnosheniyu k ionam medi (II) [Studying of sorption properties of natural sorbents in relation to copper(II) ions]. Uchenyyе zapiski. Elektronnyy zhurnal Kurskogo gosudarstvennogo universiteta, № 3. Dostupno po ssylke: (data obrashcheniya 05.05.2017) (in Russian).
17. Mosin, O. V. (2011). Prirodnyy filtruyushchiy material shungit. [Shungi , the natural filtering material]. Water and Ecology, № 2, p. 60–68. (in Russian).
18. Naumova, L. B., Gorlenko, N. P., Kazarin, A. I. (2003). Obmennyyе kationy i ikh vliyaniyе na gidrofilnost torfa [The exchange cations and their influence on hydrophily of peat]. Khimiya rastitelnogo syrya, № 3, p. 51–56 (in Russian).
19. Nikanorov, A. M., Zhulidov, A. V. (1991). Biomonitoring metallov v presnovodnykh eko-sistemakh [Biomonitoring of metals in fresh-water ecosystemp]. L.: Gidrometeoizdat, 312 p. (in Russian).
20. Pinskiy, D.L., Minkina, T.M., Mandzhiyеva, P.P., Fedorov, Yu.A., Bauer, T.V., Nevidom-skaya, D.G. (2014). Osobennosti pogloshcheniya Cu(II), Pb(II) i Zn(II) chernozemom obyknovennym iz rastvorov nitratov, khloridov, atsetatov i sulfatov. [Features of absorption of Cu(II), Pb(II) and Zn(II) the chernozem ordinary from solutions of nitrates, chlorides, acetates and sulfates]. Pochvovedeniyе, № 1, p. 22–24 (in Russian).
21. PNDF T 14.1:2:3:4.11-04. T.16.1:2:3:3.8-04. (2010). Metodika opredeleniya integralnoy toksichnosti poverkhnostnykh, v tom chisle morskikh, gruntovykh, pityеvykh, stochnykh vod, vodnykh ekstraktov pochv, otkhodov, osadkov stochnykh vod po izmeneniyu bakterialnoy bio-lyuminestsentsii test-sistemoy “Ekolyum” [Environmental normative document of the federal level T 14.1:2:3:4.11-04. T.16.1:2:3:3.8-04. A technique of determination of integrated toxicity of ficial waters, including sea, soil, drinking, sewage, water extracts of soils, waste, rainfall of sewage on change of a bacterial bioluminescence Ekolyum test system] Moskva: OOO «Nera-S», 30 p. (in Russian).
22. Radomskaya, V. I., Pavlova, L. M., Noskova, L. P., Kotelnikov, V. Yu., Ivanov, V. V., Pose-lyuzhnaya, A. V. (2014). Sorbtsionnyyе svoystva torfa i guminovykh kislot po otnosheniyu k blagorodnym metallam [Sorption properties of peat and humic acids in relation to precious metalp. Chemistry of vegetable raw materials]. Khimiya rastitelnogo syrya, p. 279–288. (in Russian).
23. Sbornik metodik izmereniy massovoy kontsentratsii ionov medi, svintsa, kadmiya, tsin-ka, vismuta, margantsa, nikelya i kobalta metodom voltamperometrii na voltampero-metricheskom analizatore «Ekotest-VA» [The collection of measurement techniques of mass concentration of ions of copper, lead, cadmium, zinc, bismuth, manganese, nickel and cobalt by a voltamperometriya method on the voltamperometrichesky Ecotest WA analyzer] (2004). M.: OOO «Ekoniks-Ekspert», 61 p. (in Russian).
24. Fokina, A. I., Lyalina, E. I., Olkova, A. P., Ashikhmina, T. Ya. (2016). Issledovaniyе protek-tornykh svoystv vosstanovlennogo glutationa dlya test-organizmov v rastvorakh, soderzhashchikh med. [Research of protective properties of the restored glutathione for test organisms in the solutions containing copper], Voda: khimiya i ekologiya, № 2, p. 64–70. (in Russian).
25. Fokina, A. I., Domracheva, L. I., Zykova, Yu. N., Skugoreva, P. G., Lyalina, E. I., Trefilova, L. V. (2017). Sovershenstvovaniyе tetrazolno-topograficheskogo metoda biotestirovaniya s ispolzovaniyеm tsianobakteriy [Improvement of a tetrazolno-topographical method of biotesting with use of cyanobacteria] Teoreticheskaya i prikladnaya ekologiya, № 1, p. 31–41 (in Russian).
26. FR.1.39.2015.19242. PND F T 14.1:2:3:4.2-98 (2015) Metodika opredeleniya tok-sichnosti prob prirodnykh, pityеvykh, khozyaystvenno-pityеvykh, khozyaystvenno-bytovykh stochnykh, ochishchennykh stochnykh, stochnykh, talykh, tekhnologicheskikh vod ekspress-metodom s primeneniyеm pribora serii «Biotester» [FEDERAL REGISTER 1.39.2015.19242. (2015). A technique of determination of toxicity in natural tests, drinking, industrial and drinking, the economic and household waste, cleared waste, waste, thawed, technological waters by express method with use of the device series the Biotester]. SPb.: OOO «SPEKTR-M», 21 p. (in Russian).
27. Petroni, P. L. G., Pires, M. A. F., Munita, C. P. (2004). Use of radiotracer in adsorption studies of copper on peat. Journal of Radioanalytical and Nuclear Chemistry, V. 259, Issue 2, Р. 239–243.
28. Sòukand, Ü., Sõukand, R., Maširin, A., Tenno, T. (2002). The Langmuir two-surface equation as a model for cadmium adsorption on peat. Science and Pollution Research, V. 9, Р. 43–48.
29. Sun, Q. Y., Lu, P., Yang, L. Z. (2004). The Adsorption of Lead and Copper from Aqueous Solutionon Modified Peat–Resin Particlep. Environmental Geochemistry and Health. V. 26. Issue 2, Р. 311–317.
30. Kezhong, G., Pearce, J., Jones, J., Taylor, C. (March 1999). Interaction between peat, humic acid and aqueous metal ionp. Environmental Geochemistry and Health, V. 21, Р. 13–26.
31. Lishtvan, I. I., Dudarchik, V. M., Kovrik, P. I., Smychnik, T. P. (2007). Wastewater treatment of metals-ecotoxicants by peat preparationp. Journal of Water Chemistry and Technology, V. 29, Issue 1, Р. 38–42.
32. Bulgariu, L., Bulgariu, D., Macoveanu, M. (April 2012). Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat. Chemical Papers, V. 66, Issue 4, Р. 239–247.
33. Cho, Y., Kim, P., Park, H., Komarneni, P., Hong, Y. (August 2014). Removal of inorganic pollutants in rainwater by a peat-derived porous material. Journal of Porous Materials, V. 21, Issue 4, Р. 387–394.
34. Ho, Y. P., McKay, G. (October 2004). Sorption of Copper(II) from Aqueous Solution by Peat. Water, Air, and Soil Pollution, V. 158, Р. 77–97.
35. Qin Fei, Wen Bei, Shan Xiao-Quan, Xie Y.-Ning, Liu Tao, Zhang Shu-Zhen, Khan Shahamat U. (2006). Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environmental Pollution, V. 144, Р. 669–680.



The necessity of developing a quantitative assessment of the level of ecological safety of the projected residential buildings is substantiated. A set of indicators for assessing the environmental safety of the projected residential buildings is proposed, taking into account the requirements of the normative documents in force in the Russian Federation. A methodology for assessing the ecological safety of residential buildings has been developed, based on six clusters of indicators: the external habitat (five indicators); home territory (ten indicators); architectural and construction aspects (twelve indicators); system of vital activity and energy efficiency (thirteen indicators); internal comfort (six indicators); durability and utilization (nine indicators). Using the expert method of prioritization, the importance of each cluster and each indicator of environmental safety is determined, which allows using the proposed ball scale to calculate the quantitative value of the integral index of environmental safety of the projected residential building. The clusters and the indicators included in the methodology can be supplemented and refined from the point of view of assessing the significance of each of them depending on the specific conditions and place of future construction. The proposed methodology can be used not only to improve the design process, but also to assess the environmental characteristics of the operated residential buildings.
Key words: methodology, ecological safety, rating score, residential building.
1. Lützkendorf ,T. (2017). Assessing the environmental performance of buildings: trends, lessons and tensions Environmental Performance of Buildings. Forthcoming special issue: Festschrift for Ray Cole, P. 1–21.
2. Malmqvist, T., Glaumann, M. (2006). Selecting problem-related environmental indicators for housing management. Building Research & Information Vol. 34, Issue 4: Building Environmental Assessment: Changing the Culture of Practice Pages 321–333.
3. Vakili-Ardebili, A., Boussabaine, A. H. (2010). Ecological Building Design Determinants.Architectural Engineering and Design Management Vol. 6, Issue 2, P.111–131.
4. Brejnrod, K. N., Kalbar, P., Petersen, S., Birkved, M. (2017). The absolute environmental performance of buildings, Vol.119, P. 87–98.
5. Kim, J., Hong, T., Jeong, J., Koob, C., Kong, M. (2017). An integrated psychological response score of the occupants based on their activities and the indoor environmental quality condition changes. Building and Environment, Vol. 123, P. 66–77.
6. Dias, W. P. S., Chandratilake, S. R., Ofori, G. Dependencies among environmental performance indicators for buildings and their implications. Building and Environment, Vol. 123, P. 101–108.
7. Haapio, A., Viitaniemi, P. (2008). Environmental effect of structural solutions and building materials to a building. Environmental Impact Assessment Review, Vol. 28, Issue 8, P. 587–600.
8. Draft of the Technical Regulations of the EAEC “On the Safety of Buildings and Structures, Building Materials and Products”.
9. GOST R ISO 14043-2001 Environmental management. Life cycle assessment. Gosstandart of the Russian Federation. M. 2002.
10. Smirnov, E. B. (1997). Vosproizvodstvo zhilishchnogo fonda krupnogo goroda v usloviyah formirovaniya ehkonomicheskih otnoshenij rynochnogo tipa [Reproduction of the housing stock of a large city in the conditions of formation of economic relations of market type]. SPb.: SPbGIEHA,147 s.
11. GOST R 54964-2012. Conformity assessment. Environmental requirements for real estate. - Moscow: Standartinform 2012.
12. Plotnikova, V. V. EHkologicheskaya bezopasnost’ i kontrol’ kachestva okruzhayushchej sredy v stroitel’stve i strojindustrii v sootvetstvii s mezhdunarodnymi standartami ISO-14000 [Ecological safety and environmental quality control in construction and construction industry in accordance with international standards ISO-14000]. M., 2001.
13. STO BDP-3-94. Standard of scientific and technical society of paper and woodworking industry. “The buildings are low-rise residential. General requirements for environmental safety“.
14. Federal Law of the Russian Federation. On the ecological examination. Adopted by the State Duma on July 19, 1995. Approved by the Federation Council on November 15, 1995.
15. Smirnov E.B., Datciuk TA, Pinkevich I.K. Methodology for a comprehensive assessment of the environmental safety of the projected residential buildings. Herald of Civil Engineers. No. 5 (40) p.219-226.
16. Criteria and regulatory documents of the system of voluntary environmental certification of real estate “Green Standards” / Ministry of Regional Development 2010. URL:
17. Methodological guide on the development of solutions for the environmental safety of construction in the PIC and PPR. - Moscow: PKTIpromstroy, 2007.
18. Blyumberg, VA The method of prioritization / VA Blumberg, VF Glushenko. - L., 1982.
19. Orlov, AI Expert assessments: Textbook. allowance / AI Orlov. - M., 2002.
20. Tretiakova, O. (2017). Calculation of Tangential Frost Heave Stresses Based on Physical, Mechanical and Stress-Strain Behavior of Frozen Soil. Architecture and Engineering, 2(3), pp. 43–51


Currently one of the most important problems of humanity is the contamination of natural waters by substances of anthropogenic nature, such as chemical substances and microorganisms. Analyzed the ranks of the long-term monitoring studies of bacterial strains isolated from coastal (littoral) and deep water zone (pelagic) ecosystems of lake Baikal. The analysis of the resistance of bacteria to antibiotics and the presence of enzymes endonucleases (ER). It is revealed that in conditions of intensive anthropogenic pollution of intertidal zone ecosystems of lake Baikal since 2003 there is the appearance of bacterial strains resistant to many antibiotics. Analysis of the obtained results showed that antibiotic resistance in different months during one year differs significantly from each other (P_value=0.003<α). Analysis of variance of the average resistance of bacteria to antibiotics during the period under review, almost did not reveal interannual differences (P_value = 0.34<α). When calculating the pairwise correlation coefficients it was possible to divide antibiotics into three groups. The first antibiotic resistance is formed independently from each other (r ≈ 0). The second group of pairs with significant positive values of correlation coefficients (r >0), the formation of cross-resistance. The third group is a couple of antibiotics with reliable negative values of correlation coefficients (r<0). In bacterial communities increased resistance to one antibiotic was accompanied by decreased resistance to another. Also, long-term studies have established that a large variety of ER is found in bacterial strains isolated from the samples taken in places where there is anthropogenic influence. The analysis of the obtained data revealed that the areas of sampling differ in the number of detectable ER (1 to 7). The more in binary the distance, the more differences in the spectrum of detectable ER. The differences on binary distance reaches up to 1 (100%), this means that ER occurring at the same point selection does not occur in the samples taken in other places. There are two pairs of sampling points, where their spectra are not different. Inside each pair of these points ER was similar, but the pairs different (binary 1 -100%). The application of statistical analysis techniques allows to identify the main regularities of changes in the microbial community of the ecosystem of lake Baikal and in the future, a comprehensive approach to solving the problem of water use.
Key words: statistical processing, cluster analysis, dispersion method, restriction endonuclease enzymes (restriction enzymes), microorganisms, Lake Baikal.
1. Verhozina, E. V. (2014). Antibiotikoustojchivost’ mikrobnogo soobshhestva jekosistemy ozera Bajkal v rajone p. Listvjanka, g. Sljudjanki i g. Bajkal’ska [Antibiotic resistance of the microbial community of the ecosystem of Lake Baikal in the vicinity of Listvyanka, Slyudyanka and Baikalsk]. Bjulleten’ VSNC SO RAMN [Bulletin of the All-Union Scientific Center of the Siberian Branch of the Russian Academy of Medical Sciences], 3: 62–65.
2. Anganova, E. V. (2014). Geterogennost’ mikrobnyh soobshhestv poverhnostnyh vodoemov po pokazateljam antibiotikorezistentnosti bakterij [Heterogeneity of microbial communities of surface water bodies according to the antibiotic resistance of bacteria]. Gigiena i sanitarija [Hygiene and Sanitation], 4: 19–22.
3. Verhozina, E. V. (2016). Primenenie dispersionnogo i korreljacionnogo metodov analiza pri issledovanii antibiotikorezistentnosti mikroorganizmov ozera Bajkal [Application of dispersion and correlation methods of analysis in the study of antibiotic resistance of microorganisms of Lake Baikal. Water: chemistry and ecology]. Voda: himija i jekologija [Water: chemistry and ecology], 12: 67–73.
4. Verhozina, V. A., Verhozina, E. V., Gonchar, D. A., Dedkov, V. S. (2004). Mikroorganizmy ozer Bajkal i N’jasa kak indikatory antropogennogo vlijanija i perspektiva ih ispol’zovanija v biotehnologii [Microorganisms of Lake Baikal and Nyasa as indicators of anthropogenic influence and the prospect of their use in biotechnology]. Prikladnaja biohimija i mikrobiologija [Applied Biochemistry and Microbiology], 40(4): 455–459.
5. Verhozina, V. A., Verhozina, E. V., Gonchar, D. A., Dedkov (2014). Razrabotka i aprobacija fiziko-himicheskih metodov v jekologicheskih issledovanijah [Development and approbation of physical and chemical methods in environmental studies]. Voda: himija i jekologija [Water: chemistry and ecology], 3, pp. 66–70.
6. Dedkov, V. S., Repin, V. E., Rechkunova, N. I. Degtjarev, S. H., Verhozina, V. A. (1990). Vyjavlenie shtammov-producentov jendonukleaz restrikcii sredi vodnyh mikroorganizmov ozera Bajkal [Detection of strains producing endonuclease restriction among aquatic microorganisms of Lake Baikal]. Izvestija Sibirskogo otdelenija AN SSSR. Ser. «Biol. nauki» [Izvestiya of the Siberian Branch of the USSR Academy of Sciences. Ser. «Biol. Science «], 1, pp. 35–37.
7. Gonchar, D. A., Dedkov, V. S., Verhozina, V. A. (1998). Jendonukleaza restrikcii Sse9I iz shtamma Sporosarcina sp. 9D, uznajushhaja posledovatel’nost’ DNK 5’-AATT-3’ [The restriction endonuclease Sse9I from the strain Sporosarcina sp. 9D, recognizing the DNA sequence 5’-AATT-3 ‘]. Molekuljarnaja genetika [Molecular Genetics], 1, pp. 32–34.
8. Verhozina, E. V., Verhozina, V. A., Verhoturov, V. V., Anganova, E. V., Savilov, E. D. (2016). Poisk shtammov-producentov jendonukleaz restrikcii (restriktaz) sredi mikroorganizmov oz. Bajkal i ih primenenie v jekologicheskih issledovanijah [Search of strains producers of restriction endonucleases (restriction enzymes) among microorganisms of the lake. Baikal and their application in environmental studies]. Izvestija Vuzov. Prikladnaja himija i biotehnologija [Proceedings of Higher Educational Institutions. Applied Chemistry and Biotechnology], 1(16), pp. 44–50.
9. Pit’evaja voda. Gigienicheskie trebovanija k kachestvu vody centralizovannyh sistem pit’evogo vodosnabzhenija. Kontrol’ kachestva. metodiki MUK 4.2.671-97, razrabotannye SanPiN [Drinking water. Hygienic requirements for water quality of centralized drinking water supply systems. Quality control. methods MUK 4.2.671-97, developed by SanPiN]
10. (2004). Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam: Metodicheskie ukazanija [Determination of the sensitivity of microorganisms to antibacterial drugs: Methodological guidelines]. M.: Federal’nyj centr Gossanjepidnadzora Minzdrava Rossii [Moscow: Federal Center for State Sanitary Epidemiological Supervision of the Russian Ministry of Health, 91 p.
11. Belavin, N. A., Dedkov, V. S., Degtjarev, S. H (1988) Metod opredelenija jendonukleaz restrikcii v kolonijah bakterij [Method of determination of restriction endonucleases in bacterial colonies]. Prikladnaja biohimija i mikrobiologija [Applied biochemistry and microbiology]. 24(1), pp. 129–132.
12. Degtjarev, S. H. Repin, V. E., Rechkunova, N. I., Netesova, N. A. (1987) Ustanovlenie specifichnosti jendonukleazy restrikcii Vne I [Establishment of the specificity of restriction endonuclease Vne I]. Bioorganicheskaja himija , 13(3), pp. 422–423.
13. Amsharin, N. P., Vorob’ev A.A. (1962) Statisticheskie metody v mikrobiologicheskih issledovanijah [Statistical methods in microbiological studies]. L.: Medgiz, 1962. 180 p.
14. Savilov, E. D. (2011). Jepidemiologicheskij analiz: Metody statisticheskoj obrabotki materiala [Epidimiological analysis: Methods of statistical processing of material]. Novosibirsk, Nauka-Centr,. 156 p.
15. Kraemer H. (2006) Correlation coefficients in medical research: from product moment correlation to the odds ratio. Statistical Methods in Medical research. 15, pp. 525-544

Dzhamalov R.G., Nikanorov A. M., Reshetnyak O. S, Safronova T. I.The water of the Oka River basin: chemical composition and sources of pollution

The analysis of long-term data in the hydrochemical composition of the surface and underground waters in the basin of the Oka River. Dynamics in spatio-temporal distribution of chemical components. It has been shown that the modern human impact on the conditions of formation of natural waters is the primary factor in their pollution, the characteristics of which are given on the basis of an integrated pollution index and water class. Found that the pp. Klyazma and Moscow have the highest pollution compared to other tributaries. Observed the spatial distribution of chemical ingredients of River waters is linked to rivers flow and its hydrological phases.
Key words: river run-off, groundwater, contamination, chemical ingredients, water quality, ecology.
1. Abramova, E.A. (2011). Ocenka urovnja antropogennoj nagruzki na bassejn reki Oki v predelah Moskovskoj oblasti. Jelektronnyj zhurnal «Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta», /2/ Geografija. S. 20. [Estimation of the level of anthropogenic impact on the Oka river basin within the Moscow Region].
2. Bogdanova, Je.G., Meshherskaja, A.V. (1998). Ocenka vlijanija poter’ na smachivanie na odnorodnost’ rjadov godovyh summ osadkov. Meteorologija i gidrologija, №11. S.88–99. 2. [Estimation of the influence of wetting losses on the homogeneity of the series of annual precipitation amounts].
3. Geologo-gidrogeologicheskie uslovija Rjazanskoj oblasti. Geocentr-Moskva URL: Geologo-gidrogeologicheskie uslovija Rjazanskoj oblasti (data obrashhenija: 25.08.2016). [Geological and hydrogeological conditions of the Ryazan Region].
4. Grishanova, Ju. S., Reshetnjak, O. S. (2015). Ocenka vlijanija krupnogo goroda na kachestvo vody reki Oka (na primere g. Dzerzhinsk). Aktual’nye problemy nauk o Zemle. Sb. tr. nauchn. konf. stud. i mol. uchenyh s mezhd. uchastiem. Rostov-n/D: Izd-vo JuFU, S. 335-337. [Estimation of the influence of a large city on the quality of the Oka river water (based on the example of the city Dzerzhinsk)].
5. Gubareva, T.S., Garcman, B.I., Shamov, V.V. i dr. (2015). Razdelenie gidrografa stoka na geneticheskie sostavljajushhie. Meteorologija i gidrologija. № 3. S. 97–108. [Separation of the hydrograph into genetic components.].
6. Zenin, A.A. (red.) (1988). Gidrohimicheskij slovar’. L.: Gidrometeoizdat, 240s. [Hydrochemical dictionary].
7. Metodicheskie ukazanija RD 52.24.643-2002. (2003). Metod kompleksnoj ocenki stepeni zagrjaznennosti poverhnostnyh vod sushi po gidrohimicheskim pokazateljam. SPb.: Gidrometeoizdat,. 49 s. [The method of comprehensive assessment of the pollution rate of surface water using hydrochemical indicators.].
8. Nikanorov, A.M. (2011). Regional’naja gidrohimija. Rostov-n/D: Izd-vo «NOK»,. 388 s [Regional hydrochemistry].
9. Nikanorov, A.M. (2015). Fundamental’nye i prikladnye problemy gidrohimii i gidrojekologii. Rostov-n/D: Izd-vo JuFU, 735 s. [Fundamental and applied problems of hydrochemistry and hydroecology.]
10. Nikanorov, A.M., (red.) (2016). Dinamika kachestva poverhnostnyh vod krupnyh rechnyh bassejnov Rossijskoj Federacii. Rostov-n/D: Izd-vo GHI, 294 s. [Dynamics of surface water quality in large river basins of the Russian Federation.].
11. Reshetnjak, O.S., Ljampert, N.A., Grishanova, Ju.S. (2015). Prostranstvennaja izmenchivost’ himicheskogo sostava i kachestva vody r. Oka. Materialy nauchnoj konferencii s mezhdunarodnym uchastiem «Sovremennye problemy gidrohimii i monitoringa kachestva poverhnostnyh vod». Rostov-na-Donu, s. 278-282. [Spatial variability of the chemical composition and water quality of the river. Oka].
12. Jablokov, Ju. E. (red.) (1973). Resursy poverhnostnyh vod SSSR. Tom 10. Verhne-Volzhskij rajon. Chast’ 1; L.: Gidrometeoizdat, 478 s. [Surface waters of the USSR].
13. Dzhamalov, R.G., Frolova, N.L. (red.) (2015). Sovremennye resursy podzemnyh i poverhnostnyh vod Evropejskoj chasti Rossii: formirovanie, raspredelenie, ispol’zovanie. M.: GEOS. 320 s. [Current resources of underground and surface water of the European part of Russia: formation, distribution, using].
14. Pinder, G. F., Jones, J. F. (1969). Determination of the Groundwater Component of Peak Discharge from the Chemistry of Total Runoff. Water Resources Research . V. 5 № 2. P. 438–445.
15. Carey, S.K, Quinton, W.L. (2005). Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment. Hydrological Processes. V.19. P. 95–114.
16. Kirchner, J.W. (2003). A double paradox in catchment hydrology and geochemistry. Hydrological Processes. V. 17. P. 871–874.


Present paper describes the investigation of dangerous air pollution by the exhaust gases of vehicles and vessels in the areas of bridges. The excess of standard limit values of pollutants concentrations at rush hours at adverse meteorological conditions is also analyzed. Approximations of the differential equation of atmospheric diffusion, data on the climate, intensity of vessels and (or) vehicles traffic, emissions of pollutants by vessels and vehicles, parameters of the motorway, the fairway of vessels are examined. The numerical investigations are realized using certified software and GIS applications. Estimates for CO, NO2, SO2, formaldehyde, benzo(α)pyrene, soot, hydrocarbons are given. The adequacy of the model is confirmed by instrumental measurements of stationary and mobile monitoring stations. New data of extreme air pollution by vehicles in the water area the «Golden Bridge» in Vladivostok and the impact of water vessels in the air pollution on the Big Obukhov Bridge in St. Petersburg have been obtained. The maps of air pollution with priority pollutants, analysis of results, conclusions are also presented. Obviously, there is a need to equip the water transport of St. Petersburg with engines corresponding to emission standards Tier - 3, 4. The methodology may be recommended for the environmental calculation assessment of existing and planned motorway bridges.
Key words: motor transport, river vessels, pollutants emissions, numerical investigations.
1. ACEA (European Automobile Manufacturers Association). (2014). Euro standards. Доступно по ссылке: (дата обращения 02.02.2014).
2. Alföldy, B., Lööv, J. B., Lagler, F. (2013). Measurements of air pollution emission factors for marine transportation in SECA. Atmos. Meas. Tech., 6, сс. 1777–1791. doi:10.5194/amt-6-1777-2013.
3. Berlyand, M. E. (1991). Prediction and Regulation of Air Pollution. Springer Netherlands, 320 p.
4. Ellison, R.B., Greaves, S.P., & Hensher, D.A. (2013). Five years of London’s low emission zone: Effects on vehicle fleet composition and air quality. Transportation Research Part D: Transport and Environment, Vol. 23, pp. 25–33.
5. Ezeah C., Finney K., Nnajide C. (2015). A Critical Review of the Effectiveness of Low Emission Zones (LEZ) As A Strategy for the Management of Air Quality in Major European Cities. Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 2, Issue 7, July – 2015.
6. Guerreiro, C., de Leeuw, F., Foltescu, V. (2013). Air Quality in Europe: 2013 report. EEA report No. 9/2013. Luxembourg: Publications Office. 110 с.
7. Hitchcock G., Conlan B., Kay D. (2014). Air Quality and Road Transport Impacts and solutions. Copyright Royal Automobile Club Foundation for Motoring Ltd. Pall Mall. No. 1002705. London. SW1Y 5HS.
8. Ivanchenko A.A. (1998). Kompleksnoye snizheniye vrednykh vybrosov dizel’nymi ustanovkami rechnykh sudov [Complex reduction of harmful emissions by diesel installations of river vessels]. Dokt. tekhn. nauk. SPbGUVK. Sankt-Peterburg, 420 s.
9. Ivanchenko A.A., Petrov A.P., Zhivlyuk G.Ye. (2015). Energeticheskaya effektivnost’ sudov i reglamentatsiya vybrosov parnikovykh gazov [Energy efficiency of ships and regulation of greenhouse gas emissions]. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova, № 3 (31), s. 103-112.
10. Kotikov, Ju. G. (2017). GIS-Modeling of Multimodal Complex Road Network and Its Traffic Organization. Transportation Research Procedia, V. 20, с. 340–346. doi: 10.1016/j.trpro.2017.01.043.
11. Ljevaja, D. (2011). Impact of emissions of Marine diesel engines to Air Pollution on the example of the Yugoslav River Shiping. International Journal for Traffic and Transport Engineering, 2011, 1(3), с. 149–157.
12. Ložkin, V., Ložkina, O., Ušakov, A. (2013). Using K-theory in geographic information investigations of critical-level pollution of atmosphere in the vicinity of motor roads. World Applied Science Journal 23 (13) с. 96–100.
13. Lozhkina, O., Lozhkin, V., Nevmerzhitsky, N., Tarkhov, D., Vasilyev, A. (2016). Motor transport related harmful PM2.5 and PM10: from on-road measurements to the modelling of air pollution by neural network approach on street and urban level. Journal of Physics: Conference Series, V. 772, № 1. Available at:
14. Lozhkina, O. V., Lozhkin, V. N. (2015) Estimation of road transport related air pollution in Saint Petersburg using European and Russian calculation models. Transport. Res. Part D, 36, с. 178–189.
15. Matti Maricq, M. (2007). Chemical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, vol. 38, no. 11, сс. 1079–1118.
16. Mamakos, A., Bonnel, P., Perujo, A., Carriero, M. (2013). Assessment of portable emission measurement systems (PEMS) for heavy-duty diesel engines with respect to particulate matter. Journal of Aerosol Science, 57, сс. 54–70. 17. Obshchesoyuznyy normativnyy dokument «Metodika rascheta kontsentratsiy v atmosfernom vozdukhe vrednykh veshchestv, soderzhashchikhsya v vybrosakh predpriyatiy – OND-86» [The method for calculating the concentrations in the air of harmful substances contained in the emissions of enterprises], Izd. Gidrometeoizdat, 1987, 93 s.
18. Sofiev M., Genikhovich E., Keronen P., Vesala T. (2010) Diagnosing the surface layer parameters for dispersion models within the meteorological-to-dispersion modeling interface. J. Appl. Meteor. Climatol. v. 49. Iss. 2. p. 221-233. Doi: 10.1175/2009JAMC2210.
19. Williams, E. J., Lerner, B. M., Murphy, P. C., Herndon, S. C., and Zahniser, M. S. (2009) Emissions of NOx, SO2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study (TexAQS) 2006, J. Geophys. Res.-Atmos., 114. doi:10.1029/2009jd012094.


The negative impact of the work of vehicles on the environment is considered. The main reasons for increasing the level of environmental losses from the growth of motorization are given. Theoretical calculations and recommendations for the calculation of total environmental losses are presented. A new method for determining environmental losses in road traffic is proposed, which differs from existing ones in that it allows to unify the results of research. The methodology was developed at the Belarusian National Technical University. The methodology is applicable to the determination of environmental losses when driving cars on the street-road network. The method-ology is based on the study of transport load and traffic conditions. Algorithmization of the calcula-tions is accessible and simple. Calculations of losses from emissions of harmful substances into the atmosphere are made at the cost of damage from the volume of emissions produced and the cost of damage to human health from the given amount of emissions. Calculation of environmental losses under the new methodology is carried out according to the author's computer program, which calculates for selected sections of the road.
Key words: ecology, methodology, losses, loss calculation, traffic flow, vehicle emissions, road traffic or-ganization.
1. Kapsky, D. V., Pegin, P. A. (2015). Accident prediction methodology using conflict zone method for «transit transport - pedestrian» conflict situation and models of traffic flows at controlled intersection. Science & Technique. Volume 5. r. 46-52.
2. Pegin, P., Sitnichuk, E. (2017). The Effect of Sun Glare: Concept, Characteristics, Classification. Transpor-tation Research Procedia. Volume 20. p. 474-479.
3. Vrubel', YU. A. (2003). Poteri v dorozhnom dvizhenii. Minsk: BNTU. s. 306.
4. Vrubel', YU. A., Kapskij, D. V., Kot, E. N. (2006). Opredelenie poter' v dorozhnom dvizhenii. Minsk. BNTU. s. 240.
5. Instrukciya o poryadke ischisleniya i uplaty naloga za pol'zovanie prirodnymi resursami (ehkologicheskogo naloga). (2003). Minsk. № 28. s. 44.
6. Kapskij, D. V. (2006). Razrabotka metodiki opredeleniya ehkologicheskih poter' v dorozhnom dvizhenii. Bezpeka dorozhn'ogo ruhu Ukraïni. Vypusk 1–2. s. 99–103.
7. Kapskij, D. V. (2012). Metodika opredeleniya ehkologicheskih poter' s uchetom transportnogo shu-ma. Vestnik Belorusskogo gosudarstvennogo universiteta transporta: Nauka i transport. Vypusk 1 (24). s. 39–42.
8. Kapskij, D. V. (2014). EHkologicheskie poteri v dorozhnom dvizhenii. Vestnik Izhevskogo gosudar-stvennogo tekhnicheskogo universiteta. Vypusk 3 (63) g. s. 163–167.
9. Kapskij, D. V., Pegin, P. A. (2015). Osnovy audita bezopasnosti dorozhnogo dvizheniya transport-nyh sooruzhenij. Habarovsk: Tihookean. gos. un-t. s. 143.
10. Kirillov, V. F., Filin, A. S. (2016). Izmerenie koncentracii vrednyh veshchestv v vozduhe (obzor). Bezopasnost' zhiznedeyatel'nosti. Vypusk 11. s. 9-14.
11. Manujlov, M. B., Moskovkin, V. M. (2016). Vliyanie poverhnostnogo stoka (dozhdevyh i talyh vod) na ehkologicheskuyu i tekhnogennuyu situaciyu v gorodah. Voda i ehkologiya: problemy i resheniya. Vypusk 4. s. 48-74.
12. Metodika ocenki ehffektivnosti vnedreniya meropriyatij po organizacii dorozhnogo dvizheniya: DMD 02191.3.020-2009. (2009). Minsk. ONTI RDUP «Belorusskij dorozhnyj nauchno-issledovatel'skij institut «BeldorNII». s. 40.
13. Normativno-tekhnicheskaya dokumentaciya po opredeleniyu vybrosov vrednyh veshchestv. (2004). Minsk. s. 34.
14. Pegin, P. A. (2003). Sposob vertikal'no-uglovogo drenirovaniya. Patent na izobretenie № 2206656, 2003. Oficial'nyj byulleten' «Izobreteniya. Poleznye modeli» № 17.
15. Pegin, P. A. (2007). Uluchshenie potrebitel'skih svojstv avtomobil'noj dorogi s uchetom solnechnogo oslepleniya voditelya. Transportnoe stroitel'stvo. № 11. s. 4-6.
16. Pegin, P. A. (2015). Ocenka vliyaniya ehffekta solnechnogo oslepleniya na propusknuyu sposobnost' avtomagistrali. Vestnik Orenburgskogo gosudarstvennogo universiteta. № 10 (129). s. 112-120.
17. Pegin, P. A., Belyaev, A. V. (2001). EHkologicheskie tekhnologii v dorozhnoj otrasli. V Problemy bezopasnosti i sovershenstvovaniya uchebnogo processa. Habarovsk, HGTU, s. 78-83.
18. Pegin, P. A., Korchagin, V. A. (2011). Vliyanie ehffekta solnechnogo oslepleniya voditelya na proiz-voditel'nost' avtomobilya. Mir transporta i tekhnologicheskih mashin. № 2 (33). s. 76-82.
19. Pegin, P. A., Skirkovskij, S. V. (2017). Razrabotka algoritma i komp'yuternoj programmy opti-mizacii parametrov funkcionirovaniya gorodskogo marshrutizirovannogo transporta. Vestnik grazhdanskih inzhenerov. № 1 (60). s. 277-287.
20. Proekt tekhnicheskogo kodeksa ustanovivshejsya praktiki «Pravila rascheta vybrosov avto-transportom v naselennyh punktah» (2006). Minsk. s. 23.

Reshetnyak O. S., Nikanorov A. M., Trofimchuk M. M., Grishanova Yu. S.ESTIMATION OF HYDROECOLOGICAL RISK IN THE OKA RIVER BASIN

The results of a hydroecological risk assessment for the population in the Oka river basin are presented. The study was carried out on the basis of analysis of long-term (2000–2015) data for the specific combinatorial index of water pollution for 29 sites on 13 rivers and statistical data on population density. The water quality in the Oka river basin varies from the 2nd ("slightly polluted") to the 5th grade ("extremely dirty"). In general, the condition of the surface waters of the Oka Basin varies conditionally from "satisfactory" within the Tambov region, when the degree of water pollution is lowest, to "critical", in the Moscow Region, where the most polluted tributaries of the Oka flow (the Moscow and Klyazma rivers). The hydroecological risk level is estimated as "low" or "medium" for most observation sites. The higher risk level (4th category - "very high") is typical for the most contaminated river sites in the basin: Klyazma River, Moscow River and the middle section of the Oka River within the Moscow Region.
Key words: hydroecological risk, pollution degree, river waters, the Oka river basin.
1. Gibkov, E. V. (2011). Jekologo-geograficheskij analiz i ocenka gidrojekologicheskogo riska na territorii Vostochnogo Donbassa v svjazi s restrukturizaciej ugol’noj promyshlennosti [Ecological and geographical analysis and assessment of hydroecological risk in the territory of the Eastern Donbass in connection with the restructuring of the coal industry]. Kand. geogr. nauk. Rostov-na-Donu, 22 p.
2. Grishanova, Ju. S., Reshetnjak, O. S. (2017). Rajonirovanie territorii bassejna Oki po stepeni zagrjaznennosti rechnyh vod [Zoning of the territory of the Oka basin by the degree of contamination of river waters]. Tezisy dokladov Vserossijskoj nauchnoj konferencii «Monitoring sostojanija i zagrjaznenija okruzhajushhej sredy. Osnovnye rezul’taty i puti razvitija» [Conference Proceedings «Monitoring of the state and pollution of the environment. Main results and ways of development «]. Moscow, March 20-22, 2017 Moscow: FGBU «IGKE Rosgidromet and RAS». pp. 474-475.
3. Danilov-Danil’jan, V. I. (2006). Potreblenie vody: jekologicheskij, jekonomicheskij social’nyj i politicheskij aspekty [Water consumption: ecological, economic social and political aspects]. Moscow: Nauka, 221 p.
4. Zakrutkin V. E., Ivanik V. M., Gibkov E. V. (2010). Jekologo-geograficheskij analiz riskov restrukturizacii ugol’noj promyshlennosti v Vostochnom Donbasse [Ecological and geographical analysis of the risks of restructuring the coal industry in the Eastern Donbass]. Izvestija RAS. Serija geograficheskaja, 5, pp. 94–102.
5. Koronkevich, N. I., Zajceva, I. S. (1992). Geograficheskoe napravlenie v izuchenii i prognozirovanii gidrojekologicheskih situacij [Geographical direction in the study and prediction of hydroecological situations], Izvestija RAS. Serija Geograficheskaja, 3, pp. 23–32.
6. Koronkevich, N. I., Zajceva, I. S., Kitaev, L. M. (1995). Negativnye gidrojekologicheskie situacii [Negative hydroecological situations], Izvestija RAS. Serija Geograficheskaja, 1, pp. 43–53.
7. Koronkevich, N. I., Barabanova, E. A., (2015). Gidrologicheskie posledstvija hozjajstvennoj dejatel’nosti na vodosborah [Hydrological Consequences of Economic Activity in the Watersheds]. Fundamental’nye problemy vody i vodnyh resursov: Trudy Chetvertoj Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem [Fundamental problems of water and water resources: Proceedings of the Fourth All-Russian Scientific Conference with international participation]. Moscow, September 15-18, 2015 M., IWP RAS, pp. 305-308.
8. Kochurov, B. I. (1997). Geografija jekologicheskih situacij (jekodiagnostika territorii) [Geography of ecological situations (eco-diagnostics of the territory)]. Moscow: IGRAN, NCEEPS, 132 p.
9. Kochurov, B. I. (2003). Jekodiagnostika i sbalansirovannoe razvitie: Uchebnoe posobie [Ecodiagnostics and balanced development: Textbook]. M.-Smolensk: Magenta, 384 p.
10. Nikanorov, A. M., Reshetnjak, O. S. (2010). Ocenka jekologicheskogo riska antropogennogo vozdejstvija na rechnye jekosistemy Kol’skogo Severa Sovremennye problemy gidrohimii i formirovanija kachestva vod: materialy nauchnoj konferencii, posvjashhennoj 90-letiju so dnja obrazovanija Gidrohimicheskogo instituta [Assessment of the environmental risk of anthropogenic impact on the river ecosystems of the Kola North Current problems of hydrochemistry and formation of water quality: the materials of a scientific conference dedicated to the 90th anniversary of the establishment of the Hydrochemical Institute]. Rostov-na-Donu, pp. 247–250.
11. Nikanorov, A. M., Bryzgalo, V. A., Reshetnjak, O. S. (2012). Reki Rossii v uslovijah chrezvychajnyh jekologicheskih situacij [The rivers of Russia in the conditions of extreme environmental situations]. Rostov-on-Don: «NOC», 308 p.
12. (2006) P 52.24.661-2004. Recommendations. Assessment of the risk of anthropogenic impact of priority pollutants on the surface waters of the land. Moscow: Izd-vo Meteoagency of Roshydromet, 26 p.
13. Reshetnjak, O. S., Ljampert, N. A., Grishanova, Ju. S. (2015). Prostranstvennaja izmenchivost’ himicheskogo sostava i kachestva vody r. Oka [Spatial variability of the chemical composition and water quality of the river. Oka]. Materials of the scientific conference with international participation «Modern problems of hydrochemistry and surface water quality monitoring». Part 2. Rostov-on-Don, September 8-10, 2015 - Rostov-on-Don, Pp. 278-282.
14. Reshetnjak, O. S., Grishanova, Ju. S. (2016). Mnogoletnie i sezonnye izmenenija razvitija fitoplanktona i ocenka sostojanija reki Oka v rajone g. Dzerzhinsk [Long-term and seasonal changes in the development of phytoplankton and assessment of the state of the Oka River in the vicinity of Dzerzhinsk]. Water: Chemistry and Ecology, 3: 14-21.
15. Stepanova, N. Ju. (2008). Faktory i kriterii ocenki jekologicheskogo riska dlja ustojchivogo funkcionirovanija Kujbyshevskogo vodohranilishha [Factors and criteria for assessing the environmental risk for the sustainable operation of the Kuibyshev Reservoir]. Avtoref. …d-ra biol. nauk, Ul’janovsk, 42 s.
16. (2000). EPA/630/R-00/002. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures / Risk Assessment Forum / U.S. Environmental Protection Agency. – Washington, DC, 20460, 209 p.
17. Reshetnyak, O. S. (2016). Environmental regulation of the chemical pollution in aquatic ecosystem (Biological aspects) // Water Resources 43(2): 364–368.


A mathematical model of the counter flow laminar motion of liquid and gas in a scrubber with chaotic packing of packed bodies is considered. The nozzle layer is presented in the form of a narrow channel whose dimensions depend on the specific surface area and the fraction of the free volume of the nozzle. The optimization problem is formulated allowing at the initial design stage to find the geometric and mode parameters of the absorber operation, ensuring its maximum efficiency while observing a set of design and technological limitations. It is proposed to evaluate the hydrodynamic operation mode of the nozzle in terms of the speed at the interface. As an objective function, the energy costs for the movement of fluid and air were considered. The efficiency of the solution obtained was estimated on the basis of the hydrodynamic analogy of mass and momentum transfer in the model. The testing of the model showed the dependence of the convergence of the iterative process on the domain of determining the variable variables of the objective function and the tuning parameters of the evolutionary method for solving the optimization problem.
Key words: absorber, equivalent channel, optimization, power method, hydrodynamic analogy.
1. Emelyanov, V. V., Kureychik, V. V., Kureychik, V. M. (2003). Teoriya i praktika evolyutsionnogo modelirovaniya [Theory and practice of evolutionary modeling]. M.: Fizmatlit, 432 p.
2. Ziganshin, M. G., Kolesnik A.A., Posohin V.N. (1998). Proektirovanie apparatov pyilegazoochistki [Designing devices for cleaning gases from dust]. M.: «Ekopress-3M», 505 p.
3. Kagan, A. M., Pushnov, A. S. (2008). Sravnitelnyie harakteristiki nasadok dlya protsessov teplo- i massoobmena [Comparative characteristics of nozzles for heat and mass transfer processes]. Himicheskoe i neftegazovoe mashinostroenie, № 4, pp. 5–7.
4. Kagan, A. M. Chizh, K. V. (2010). Aerodinamika minikoltsevyih nasadok [Aerodynamics of mini-ring attachments]. Energosberezhenie i vodopodgotovka, № 6, pp. 42–45.
5. Laptev, A. G. Farahov, M. M. (2006). Razdelenie geterogennyih sistem v nasadochnyih apparatah [Separation of heterogeneous systems in nozzles]. Kazan: Kazan. gos. energeticheskiy. un-t., 342 p.
6. Lapteva, E. A., Laptev, A. G. (2016). Opredelenie koeffitsientov teplo- i massootdachi ot chastits na osnove razvitiya gidrodinamicheskoy analogii [Determination of the coefficients of heat and mass transfer from particles on the basis of the development of the hydrodynamic analogy]. Fundamentalnyie i prikladnyie issledovaniya v sovremennom mire, No 14-1, pp. 61–66.
7. Laptev, A. G., Basharov, M. M., Runov, D. M. (2015). Opredelenie koeffitsientov teplootdachi v kanalah s elementami intensifikatsii [Determination of heat transfer coefficients in channels with intensification elements]. Mezhdunarodnyiy zhurnal prikladnyih i fundamentalnyih issledovaniy, No 3-3, p. 311–315.
8. Pronin, V. A, Utin, A. V. (2012) Nasadochnyiy skrubber. Patent na poleznuyu model [Filler scrubber. Patent for utility model]. RU 113170.
9. Pronin, V. A, Utin, A. V. (2013). Nasadochnyiy skrubber. Patent na poleznuyu model [Filler scrubber. Patent for utility model]. RU 125877.
10. Romankov, P. G., Frolov, V. F., Flisyuk, O. M. (2011). Massoobmennyie protsessyi himicheskoy tehnologii [Mass exchange processes of chemical technology]. M.: Himizdat, 448 p.
11. Rutkovskaya, D., Pilinskiy, M., Rutkovskiy, L. (2008). Neyronnyie seti, geneticheskie algoritmyi i nechetkie sistemy [Neural networks, genetic algorithms and fuzzy systems]. M.: Nauka, 452 p.
12. Sugak, E. V., Voynov, N. A., Nikolaev, N. A. (1999). Ochistka gazovyih vyibrosov v apparatah s intensivnyimi gidrodinamicheskimi rezhimami [Purification of gas emissions in devices with intensive hydrodynamic regimes]. Kazan, RITs «Shkola», p. 340.
13. Targ, S. M. (1951) Osnovnyie zadachi teorii laminarnyih techeniy [The main problems of the theory of laminar flows]. M.: GITTL, p. 420.
14. Uzhov, V. N. (1981). Ochistka promyishlennyih gazov ot pyili [Cleaning of industrial gases from dust]. M.: Himiya, 265 p.
15. Farahov, M. M., Laptev, A. G. (2014). Metod ekvivalentnogo kanala v modelirovanii massoperenosa v haotichnyih nasadochnyih sloyah [Equivalent channel method in modeling mass transfer in chaotic packing layers]. Fundamentalnyie issledovaniya, №9, pp. 2148–2152.
16. Tsyigankov, A. V., Pronin, V. I., Shpilin, D. I., Aleshin, A. E. (2014). Gidrodinamicheskiy raschet oroshaemoy kolonnyi s poristyimi nasadochnyimi telami [Calculation of hydrodynamics for spray tower wits porous packing]. Vestnik MAH, No 2, p. 34-36.




Results of studying of ionic composition of water of lakes of the National natural park "Nurgush" are given: Nurgush, Krivoe, Chernoe. The obtained data demonstrate that in tests of water of the explored lakes the content of sulfates, chlorides, nitrates, fluorides, ions of sodium, potassium, calcium, magnesium, hydrogen is in maximum allowable concentration limits. Excess of maximum allowable concentration is noted only for ammonium ions in June and December, 2016 in 30 % of the selected tests. During the winter period the maintenance of ions of sodium, potassium, magnesium, calcium and chlorides in lakes considerably exceeds concentration of these ions during the spring and summer periods. For sulfates and nitrates other dynamics is revealed: in the period of a flood of 2017 of value of concentration were at 5–44 time and 1,5–2,8 times are higher, than in June and December, 2016. The following order of distribution of anions is characteristic of the explored lakes of the reserve "Nurgush": НСО3- >> SO42- > Cl- > NO3– > F-. Distribution of cations in water of lakes corresponds to a number of Са2+ > Na+ > Mg2+ > К+. Water of lakes treat hydrocarbonate calcic waters. The content of the majority of the studied ions was slightly higher in the Krivoe lake in comparison with the Nurgush and Chernoe lakes.
Key words: ionic composition of water, lake, National Natural Park "Nurgush".
References: References
1. Alekin, O. A. (1970). Osnovy gidrokhimii [Fundamentals of hydrochemistry]. L.: Gidrometeoizdat. 442 p. (in Russian). 2. Bubnov, A. G., Buymova, S. A. (2008). Metod biotestirovaniya v otsenke kachestva rodnikovykh vod gorodov Ivanovo i Kokhma Ivanovskoy oblasti [A method of bioassay in assessing the quality of spring water in the cities of Ivanovo and Kokhma of the Ivanovo region]. Khimiya i khimicheskaya tekhnologiya, T. 51, № 3. pp. 19– 23. (in Russian).
3. Efimova, L. E., Terskaya, E. V., Povalishnikova, E. S., Lomova, D. V., Korableva, O. V. (2014). Sezonnyyе izmeneniya gidrologicheskikh i gidrokhimicheskikh pokazateley v ozerakh Kerzhenskogo zapovednika po rezultatam issledovaniy 2012– 2013 gg. [Seasonal changes of hydrological and hydrochemical indicators in lakes of the kerzhenskiy state nature reserve the results of studies 2012-2013]. V: Trudy Gosudarstvennogo prirodnogo biosfernogo zapovednika «Kerzhenskiy», T. 6. Nizhniy Novgorod, pp. 65–80. (in Russian).
4. Kraynov, S. R., Shvets, V. M. (1992). Gidrogeokhimiya [Hydrochemistry]. M.: Nedra, 463 p. (in Russian).
5. (2000). Letopis prirody zapovednika «Nurgush» za 1995– 1996 gg. [Chronicle of nature reserve «Nurgush» for 1995-1996], Kn. 1. Borovka, 307 p. Rukopis. (in Russian).
6. GOST 31957–2012 (2013). Voda: Metody opredeleniya shchelochnosti i massovoy kontsentratsii karbonatov i gidrokarbonatov [Water: Methods for the determination of alkalinity and mass concentration of carbonates and bicarbonates]. Moskva: Standartinform. (in Russian).
7. Nikanorov, A. M. (2001). Gidrokhimiya [Hydrochemistry]. SPb: Gidrometeoizdat, 444 p. (in Russian).
8. Orlova, T. N., Bazalov, D. A. (2013). Khimiya prirodnykh i promyshlennykh vod [Chemistry of natural and industrial waters]. Yaroslavl: YarGU, 120 p. (in Russian). 9. (1999). Perechen rybokhozyaystvennykh normativov, predelno dopustimykh kontsentratsiy (PDK) i oriyеntirovochno bezopasnykh urovney vozdeystviya (OBUV) vrednykh veshchestv dlya vody vodnykh obyеktov, imeyushchikh rybokhozyaystvennoyе znacheniyе [The list of fishery norms of maximum permissible concentrations (MPC) and approximately safe impact levels (WEL) of harmful substances for water in water objects with fishing value] M.: Izd-vo VNIRO, 304 p. (in Russian).
10. (1995). Perechen predelno dopustimykh kontsentratsiy i oriyеntirovochno bezopasnykh urovney vozdeystviya vrednykh veshchestv dlya vody rybokhozyaystvennykh vodoyеmov [List of maximum permissible concentrations and approximately safe impact levels of hazardous substances for water of fishery water bodies] . M.: TOO «Medinor», 220 p. (in Russian).
11. Potrokhov, A. S. (2008). Snizheniyе antistressovymi preparatami nervnoparaliticheskogo deystviya vysokoy kontsentratsii ammoniya na ryb [The reduction in stress drugs nerve the effects of high ammonium concentrations on fish]. V Reports of the National Academy of Sciences of Ukraine, № 9. pp. 156–162. (in Russian).
12. Rysayеva, I. A., Dvinskikh, A. P. (2013). Osobennosti makrokomponentnogo sostava vod ozer Raifskogo uchastka Volzhsko-Kamskogo gosudarstvennogo prirodnogo biosfernogo zapovednika [Features of macrocomponent composition of water in lakes Raif area of the Volga-Kama state natural biosphere reserve]. V Retsenziruyеmyy, referiruyеmyy nauchnyy zhurnal «Vestnik AGU», Vyp. 4. Maykop: Izd-vo AGU, 2013. pp. 88–94. (in Russian).
13. Unkovskaya, E. N., Shagidullin, R. R. (2009). Dinamika khimicheskogo sostava ozer Volzhsko-Kamskogo zapovednika [Dynamics of the chemical composition of lakes in the Volga-Kama reserve]. V: Samarskaya Luka: problemy regionalnoy i globalnoy ekologii. Samarskaya Luka, T. 18, № 3, pp. 114–120. (in Russian).
14. FR.1.31.2005.01724. (2008). Metodika vypolneniya izmereniy massovoy kontsentratsii ftorid-, khlorid-, nitrat-, fosfat- i sulfationov v probakh pityеvoy, mineralnoy, stolovoy, lechebno-stolovoy, prirodnoy i stochnoy vody metodom ionnoy khromatografii [Technique of execution of measurements of mass concentration of fluoride, chloride, nitrate, phosphate and sulphate ions in samples of drinking, mineral, dining room, medical-table, natural and waste water by ion chromatography]. M.: Akvilon, 26 p. (in Russian).
15. FR.1.31.2005.01738. (2008). Metodika vypolneniya izmereniy massovoy kontsentratsii kationov ammoniya, kaliya, natriya, magniya, kaltsiya, strontsiya v probakh pityеvoy, mineralnoy, stolovoy, lechebno-stolovoy, prirodnoy i stochnoy vody metodom ionnoy khromatografii [Technique of execution of measurements of mass concentration of ammonium cations, potassium, sodium, magnesium, calcium, strontium in samples of potable, mineral, dining room, medical-table, natural and waste water by ion chromatography]. M.: Akvilon, 30 p. (in Russian).


This article describes the problem existing in the field of wastewater treatment which is associated with eutrophication of water bodies resulting from the discharge of purified wastewater with residual concentration of phosphorus. Negative consequences, including the growth of algae in water bodies used for domestic purposes, are listed. Places and causes of the most intensive allocation of phosphorus during wastewater and sludge treatment are pointed. Wastewater incoming to a wastewater treatment plant (WWTP) has several sources of phosphorus saturation: wastewater from housing estate and industrial enterprises, sludge water of excessive activated sludge compactors or sludge water of joint compactors of raw sludge and excess activated sludge,sludge water of sludge dewatering basin of combined thickening raw sludge and excessive activated sludge, sludge water of sludge dewatering basin of washed sludge in schemes with sludge digesters and vacuum filters, as well as sludge water from sludge beds, centrifuge effluent of centrifuges and filtrate of filter presses. Comparative evaluation of reagents currently used to extract phosphorus is given, and necessary conditions for a successful crystallization process are shown. Experimental data are analyzed from the point of view of their possible application at functioning WWTPs.
Key words: eutrophication, dephosphorization, wastewater, phosphorus, reagents.
References: 1. Alekseev, M. I., Fokicheva, Е. А. (2014). Analiz protekaniya processov defosfotacii stochnyh vod pri ispol’zovanii mineral’nyh reagentov, [Analysis of the processes of deportazii sewage by using of mineral reagents]. Vestnik grazhdanskih inzhenerov, no. 3 (44), p. 168. (in Russian)
2. Ambrosova, G T., Ksenofontova, О. V., Sannikov, V. А. (2004). Prichiny obrazovaniya tverdyh otlozhenij v sistemah vodootvedeniya svinokompleksov i sposoby ih ustraneniya, [Reasons for the formation of solid deposits in sewer systems of pig farms and ways for their elimination]. Novosibirsk State University of Architecture and Civil Engineering Publ., Novosibirsk, 200 p. (in Russian)
3. Ambrosova, G T., Gvozdev, V. А., Cvetkova, О. P. (2005). Vozmozhnye varianty intensifikacii ochistnyh sooruzhenij kanalizacii, [Possible intensification of sewage treatment facilities] Izvestiya vuzov. Stroitel’stvo, no. 4, p. 101. (in Russian)
4. Ambrosova, G. T., Merkel’, О. М., Boyko, Т. А. (2003). Zakonomernosti processa defosfatizacii aktivnogo ila v anaehrobnyh usloviyah [Regularities of the process of dephosphotization activated sludge under anaerobic conditions], Izvestiya vuzov. Stroitel’stvo, no. 6, p. 75. (in Russian)
5. Ambrosova, G. T., Matyushenko, E. N., Funk, A. A. (2016). On the question of reduction of phoshates. Proceeding of 8th International Conference Contemporary Problems of Architecture and Construction, Yerevan, pp. 7–9. (in Russian)
6. Dolona, L. F. (2011). Ochistka stochnyh vod ot biogennyh ehlementov [Wastewater treatment from biogenic elements], Kontinent Publ., Dnepropetrovsk, 198 p. (in Russian)
7. Zaletova, N. А. (2011), Osobennosti himicheskogo udaleniya fosfora pri biologicheskoj ochistke stochnyh vod [Features of chemical phosphorus removal in biological wastewater treatment], Vodosnabzhenie i sanitarnaya tekhnika, no. 11, p. 40. (in Russian)
8. Zilov, Е. А. (2009). Gidrobiologiya i vodnaya ehkologiya (organizaciya, funkcionirovanie i zagryaznenie vodnyh ehkosistem) [Hydrobiology and aquatic ecology (organization, operation, and pollution of aquatic ecosystems)]. Irkutsk, pp. 77–78. (in Russian)
9. Ivchatov, А. L., Malov, V. I. (2014). Himiya vody i mikrobiologiya [Chemistry of water and Microbiology] INFRA-M Publ., Moscow, 218 p.(in Russian)
10. Kamyshnikova, Е. V. (2015). Obzor metodov ochistki stochnyh vod dlya ih primeneniya v oroshenii sel’skohozyajstvennyh kul’tur [Review of wastewater treatment methods for agricultural irrigation needs], Stroitel’stvo i tekhnogennaya bezopasnost’, no.1 (53), pp. 100–114. (in Russian)
11. Kolova, А. F., Pazenko, Т. Y., Chudinova, Е. М. (2013). Reagentnoe udalenie fosfatov iz slivnyh vod [Phosphate reagent removal from waste water]. Vestnik IrGTU, no.10 (81), pp. 161–163. (in Russian)
12. Petukhova, Е. А., Ruchkinova, О. И. (2017). Defosfotaciya stochnyh vod [Dephosphorization of wastewater]. Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta. Prikladnaya ehkologiya. Urbanistika, no.2, p. 136. (in Russian)
13. Samohin, V. N. (ed.) (1981). Kanalizaciya naselennyh mest i promyshlennyh predpriyatij. Spravochnik proektirovshchika [Sewage of populated places and industrial enterprises. Directory of designer], Stroyizdat Publ., Moscow, 639 p. (in Russian)
14. Sapon, Е. G., Marcul, V. N. (2015), Issledovanie ochistki stochnyh vod ot fosfatov materialami, poluchennymi iz prirodnogo syr’ya i othodov [Study of waste waters from phosphate materials obtained from natural raw materials and waste]. Trudy BGTU, no.3, pp. 20–28. (in Russian)
15. Ambrosova, G. T., Matyushenko, E. N. Gavrilenko, K. P., Nemshilova, М. Y.,Razgonyaeva, К. А., Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (2016), Sposob ochistki stochnoj zhidkosti ot fosfatov i sul’fatov, [Method of phosphates and sulfates removal from wastewater], Invention. Utility model, vol. 22, Moscow, RU, no. 2593877. (in Russian)

Dzhamalov R. G., Myagkova K. G., Nikanorov A. M., Reshetnyak O. S., Safronova T. I., Trofimchuk M. M.HYDROCHEMICAL RUNOFF OF THE OKA BASIN’S RIVERS

Abstract: The dynamics change and the direction of natural-anthropogenic hydrochemical processes are considered. A spatio-temporal analysis of the distribution of major sources of pollution and the influence of basic chemical indicators on the quality of the natural waters of the Oka basin has been performed. Maps of the distribution of critical indicators of water pollution by area of the basin are presented, as well as the area distribution of the specific combinatorial index of water pollution at different time intervals. The indicators of the quality of the Oka river waters and their dynamics for 1990–2015 are given.
Key words: river run-off, groundwater, contamination, chemical ingredients, water quality, ecology
1. (2003). Metodicheskie ukazaniya RD 52.24.643-2002. Metod kompleksnoj ocenki stepeni zagryaznennosti poverhnostnyh vod sushi po gidrohimicheskim pokazatelyam [The method of integrated assessment of the degree of contamination of surface waters of the land by hydrochemical indicators]. SPb.: Gidrometeoizdat, 49 p.
2. (2010). Skhema kompleksnogo ispol’zovaniya i ohrany vodnyh ob`ektov bassejna reki Oka [Scheme of integrated use and protection of water bodies in the Oka river basin]. Moskva: Moskovsko-Okskoe BVU, 152 p.
3. Kirchner, J. W. (2003). A double paradox in catchment hydrology and geochemistry. Hydrological Processes. V. 17. P. 871–874.
4. Abramova, E. A. (2011). Ocenka urovnya antropogennoj nagruzki na bassejn reki Oki v predelah Moskovskoj oblasti [Assessment of the level of anthropogenic pressure on the Oka river basin within the Moscow Region]. Ehlektronnyj zhurnal «Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta», 2 Geografiya. p. 20.
5. Geologo-gidrogeologicheskie usloviya Ryazanskoj oblasti [Geological and hydrogeological conditions of the Ryazan region]. URL: (accessed on 25.08.2016).
6. Grishanova, Yu. S., Reshetnyak, O. S. (2015). Ocenka vliyaniya krupnogo goroda na kachestvo vody reki Oka (na primere g. Dzerzhinsk) [Evaluation of the influence of a large city on the quality of the Oka river water (by the example of Dzerzhinsk)]. Aktual’nye problemy nauk o Zemle. Rostov-n/D: Izd-vo YUFU, pp. 335–337.
7. Dzhamalov, R. G. (red.) (2015). Atlas vozobnovlyaemyh vodnyh resursov Evropejskoj chasti Rossii [Atlas of renewable water resources in the European part of Russia]. M.:IVP RAN, 96 p.
8. Dzhamalov, R. G. (red.) (2015). Sovremennye resursy podzemnyh i poverhnostnyh vod Evropejskoj chasti Rossii [Modern resources of underground and surface waters of the European part of Russia]. M.:GEOS, 320 p.
9. Dzhamalov, R. G., Frolova, N. L. (2015). Osobennosti formirovaniya sovremennyh resursov podzemnyh vod evropejskoj chasti Rossii [Features of the formation of modern groundwater resources of the European part of Russia]. Vodnye resursy, vol. 42, № 5, pp. 457–466.
10. Nikanorov, A. M. (2011). Regional’naya gidrohimiya .[Regional hydrochemistry]. Rostov-n/D: Izd-vo «NOK», 388 p.
11. Nikanorov, A. M. (2015). Fundamental’nye i prikladnye problemy gidrohimii i gidroehkologii [Fundamental and applied problems of hydrochemistry and hydroecology]. Rostov-n/D: Izdvo YUFU, 735 p.
12. Nikanorov, A. M., Minina, L. I. (2016). Dinamika kachestva poverhnostnyh vod krupnyh rechnyh bassejnov Rossijskoj Federacii [The dynamics of the quality of surface water in large river basins of the Russian Federation]. Rostov-n/D: Izd-vo GHI. 294 p.
13. Reshetnyak, O. S., Nikanorov A. M., Trofimchuk M. M., Grishanova YU. S. (2017). Ocenka gidroehkologicheskogo riska v bassejne reki Oka [Assessment of hydroecological risk in the Oka river basin]. Voda i ehkologiya: problemy i resheniya, №3. pp. 158–170.
14. (2017). Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2016 god [Report on the peculiarities of climate on the territory of the Russian Federation for 2016]. Moskva, 70 p.
15. Shiklomanov, I. A. (red.) (2008). Vodnye resursy Rossii i ih ispol’zovanie ispol’zovanie [Water resources of Russia and their use]. SPb.: GGI, 598 p.


Technical aspects of water disposal and mechanical of stormwater from the urbanized territories are considered. The main features of stormwater treatment in urban areas with a high density of building are considered. The analysis is given to a way of passive mechanical treatment of stormwater a with pretreatment (gravity separation) and a filtration on the peat filtering material. Devices and structural elements of the passive treatment systems of stormwater installed on sewer networks of water disposal are given. Passive mechanical treatment systems are well scaled that does them by the ideal choice for the distributed city infrastructure models. In the treatment process joins owners of territories that increases their responsibility for environmental protection, and reduces load of local budgets. For the last 15 years more than 1000 passive stormwater treatment systems in St. Petersburg and the Leningrad, Novgorod and Pskov regions, in the Karelia Republic are brought into operation.
Key words: stormwater, passive mechanical treatment system, peat filtering media, suspended solids, hydrocarbons
References: 1. (2000). GOST 3634-99. Lyuki smotrovyh kolodcev i dozhdepriemniki livnestochnyh kolodcev. Tekhnicheskie usloviya [Hatches of manholes and rainwater drainage wells. Technical conditions]. M.: GUP CPP, 23 p. 2. (2013). The Stormwater Management StormFilter. Dostupno po ssylke: 3. Dierkes, C., Göbel, P., Coldewey (2006). “Passive Filter – Sustainable BMP for Permanent Stormwater Treatment of Heavy Metals, Nutrients, Hydrocarbons and Sediment”. Available at: 4. Barinov, A. M., Barinov, M. Yu. (2016). Optimizaciya rezhimov raboty i uluchshenie rezhimov ehkspluatacii ochistnyh sooruzhenij poverhnostnogo stoka [Optimization of operating modes and improvement of operating conditions for surface runoff treatment facilities]. Vodosnabzhenie i sanitarnaya tekhnika, № 4, pp. 53–57. 5. Grafova, E. O., Ayukaev, R. I., Venicianov, E. V. (2012). Matematicheskoe modelirovanie i raschet mnogoslojnyh fil’trov maloj tolshchiny dlya sorbcionnoj ochistki poverhnostnogo stoka s zagorodnyh uchastkov avtomagistralej [Mathematical modeling and calculation of low-thickness multilayer filters for sorption cleaning of surface runoff from suburban motorway sections]. Uchenye zapiski PetrGU, №8, pp. 7–82. 6. Danilovich, D. A., Serpokrylov, N. S. (2015). Principial’nye polozheniya koncepcii spravochnika po nailuchshim dostupnym tekhnologiyam «Ochistka stochnyh vod s ispol’zovaniem centralizovannyh sistem vodootvedeniya poselenij, gorodskih okrugov» [Principles of the concept of the handbook on best available technologies “Wastewater treatment using centralized drainage systems of settlements, urban districts”]. Inzhenernostroitel’nyj vestnik Prikaspiya, № 2 (12), pp. 50–54. 7. Dikarevskij, V. S., Kurganov, A. M. (1990). Otvedenie i ochistka poverhnostnyh stochnyh vod [Removal and treatment of surface wastewater]. L.: Strojizdat, 224 p. 8. Kim, A. N., Davydova, E. V., Polyanskaya, D. I. (2016a). Otvedenie i ochistka poverhnostnogo stoka v Astrahani: sovremennoe sostoyanie i perspektiva razvitiya [The diversion and purification of surface runoff in Astrakhan: the current state and the prospect of development.]. Vestnik SGASU. Gradostroitel’stvo i arhitektura, № 2, pp. 31–35. 9. Kim, A. N., Mihajlov, A. V., Grafova, E. O. (2017). Tekhnicheskie aspekty poverhnostnogo stoka s urbanizirovannyh territorij [Technical aspects of surface runoff from urban areas]. SPb.: SPbGASU, 200 p. 10. Kim, A. N., Mihajlov, A. V., Prodous, O. A. (2015). Fil’tr s torfyanoj zagruzkoj [Filter with peat load]. Patent RU № 154656. 11. Kim, A. N., Mihajlov, A. V., Prodous, O. A. (2016). Ustrojstvo dlya ochistki stochnyh vod, ustanavlivaemoe v kanalizacionnom kolodce [Device for wastewater treatment installed in a sewage well]. Patent RU № 2583177. 12. Manujlov, M. M., Moskovkin, V. M. (2016). Vliyanie poverhnostnogo stoka (dozhdevyh i talyh vod) na ehkologicheskuyu i tekhnogennuyu situaciyu v gorodah [Influence of surface run-off (rain and meltwater) on the ecological and technogenic situation in cities]. Water and Ecology, № 2, pp. 35–47. 13. Menshutin, Yu. A., Vereshchagina, L. M., Kerni, A. S.. (2015). Rekomendacii po raschetu sistem sbora, otvedeniya i ochistki poverhnostnogo stoka s selitebnyh territorij, ploshchadok predpriyatij i opredeleniyu uslovij vypuska ego v vodnye ob»ekty [Recommendations for the calculation of systems for collecting, diversion and cleaning of surface runoff from residential areas, sites of enterprises and determining the conditions for its release into water bodies]. M.: VNIIVODGEO, 146 s. 14. Minprirody Rossii (2016). Gosudarstvennyj doklad «O sostoyanii i ob ohrane okruzhayushchej sredy Rossijskoj Federacii v 2015 godu» [State report «On the state and on the protection of the environment of the Russian Federation in 2015».]. M.: NIAPriroda, 639 s. 15. Mihajlov, A. V. (red.) (2014). Vodootvedenie i ochistka poverhnostnogo stoka na torfyanyh fil’trah [Wastewater removal and treatment of surface runoff on peat filters:]. SPb.: «Izd. OOO «Sborka», 138 s. 16. Pravitel’stvo Sankt-Peterburga (2013). Postanovlenie ot 11 dekabrya 2013 goda № 989 «Osnovnye polozheniya skhemy vodosnabzheniya i vodootvedeniya Sankt-Peterburga na period do 2025 goda s uchetom perspektivy do 2030 goda» [The main provisions of the scheme of water supply and sanitation in St. Petersburg for the period until 2025, taking into account the prospects until 2030]. Available at: 22402702&prevDoc=537980606 17. Probirskij, M. D., Rublevskaya, O. N., Kim, A. N., Ivanenko, I. I. (2015). Perspektivy otvedeniya i ochistki poverhnostnogo stoka v Sankt-Peterburge [Prospects for the diversion and cleaning of surface runoff in St. Petersburg]. Vodosnabzhenie i sanitarnaya tekhnika, № 6, pp. 32–40. 18. Rublevskaya, O. N., Leonov, L. V., Mishukov, B. G. (2013). Ocenka raskhoda i sostava stochnyh vod v Sankt-Peterburge [Assessment of wastewater consumption and composition in St. Petersburg]. Vodosnabzhenie i sanitarnaya tekhnika, №9, p. 60. 19. Rublevskaya, O. N., Mihajlov, A. V., Kim, A. N., Prodous, O. A. (2014). Primenenie torfyanyh fil’trov v lokal’nyh ochistnyh sooruzheniyah [Application of peat filters in local treatment facilities] Innovacionnye sistemy otvedeniya i ochistki poverhnostnyh stokov s urbanizirovannyh territorij. Mater. mezhdunar. nauch.-prakt. konf. Petrozavodsk: Svoe izdatel’stvo, pp. 45–52. 20. Tomson, A. E. Naumova, G. V. (2009). Torf i produkty ego pererabotki [Peat and products of its processing]. Minsk : Belarus. navuka, 328 p. 21. Feofanov, YU. A., Mishukov, B. G. (2017). Osobennosti formirovaniya sostava poverhnostnyh stochnyh vod i vybor sooruzhenij po ih ochistke [features of formation of surface sewage composition and selection of facilities for their purification]. Water and Ecology, №3, pp. 49–66. 22. Franks, C. A., Davis, A. P., Aydilek, A. H. (2011). Geosynthetic Filters for Water Quality Improvement of Urban Stormwater Runoff. Proceedings of the Water Environment Federation, WEFTEC 2010: Session 41 through Session 50, pp. 2944–2953. 23. Galavotti, H. (2016). Summary of State Stormwater Standards. Dostupno po ssylke: npdes/stormwater/upload/sw_state_summary_standards.pdf


The article presents laboratory and experimental studies in natural conditions for the liquidation of oil spills with a new hydrophobic sorption material made on the basis of powdered carbonate sludge. At HPS, sludge is formed by liming and coagulation of natural water in clarifiers. Carbonate sludge is a waste of chemical naturalwater treatment atenergy sector. The sorption materials allow at the minimum costs, to maximally eliminate the consequences of oil spills and oil products in the water areas and to avoid environmental catastrophe. To this materials a number of requirements are met: hydrophobicity, high oil content, buoyancy, ability to retain oil when removing the sorbent from the water area, opportunity of utilization or biodegradability, resistance to degradation in the aquatic environment, the possibility of multiple regeneration, ease of operation, efficiency of operation over a wide range of temperatures, non-toxicity, reasonable (optimal) cost. The obtainedmaterial has these requirements. The technical characteristics of the sorption material, the oil capacity, the express quality control of the water extract of the developed granular adsorbent for acute lethal toxicity for crustaceans of the species Daphnia Magna Str. And fishes of the Poecillia Reticulata Pet., the way of utilization of the oliy sorbent are presented.
Key words: hydrophobic sorption material, oil spills and oil products, outdoor pong, oil spill scheme, biotesting, secondary pollution
References: 1. Van Hamme, JD, Singh, A, Ward, OP (2006), “Physiological aspects. Part 1 in series of papers devoted to biosurfactants in microbiology and biotechnology”, Biotechnology Advance, vol. 24, pp. 604–620. 2. Vishnyakov, D., Novoselov, A., Avramenko, A., Zagvozdkin, V., Zaikin, I. (2005), Ekonomicheskiy analiz metodov likvidatsii posledstviy avariynyih razlivov nefti [Economic analysis of methods of liquidation of consequences of oil spills], Ecology and Industry of Russia, June, pp. 42 – 45 (in Russian). 3. Patin, S. (2008), Neftyanyie razlivyi i ih vozdeystviya na morskuyu sredu i bioresursyi [Oil spills and their effects on the marine environment and bioresources], Moscow, VNIRO, p. 508 (in Russian). 4. Vorobiev, Yu., Akimov, V., Sokolov, Yu. (2005). Preduprezhdenie I likvidatsiya avariynyih razlivov nefti I nefteproduktov [Prevention and liquidation of oil spills and oil products], Moscow, In Octavo, p. 368 (in Russian). 5. Kamenshchikov, F., Bogomolny, E. (2006), Udalenie nefteproduktov s vodnoy poverhnosti i grunta [Removal of oil products from the water surface and soil]. Moscow, Institute for Computer Research, p. 528 (in Russian). 6. Nikolaeva, L., Golubchikov, M., Zakharova, S. (2012), Izuchenie sorbtsionnyih svoystv shlama osvetliteley pr iochistke stochnyih vod TES ot nefteproduktov [Study of the sorption properties of clarifier sludge during the treatment of waste water from TPPs from oil products], IzvestiyaVUZov Problems of energy, no.9-10, pp. 86-91 (in Russian). 7. Nikolaeva, L., Golubchikov, M., Zakharova, S. (2012), Granulirovannyie gidrofobnyie adsorbenty I na osnove karbonatnogo shlamaosvetliteley HVO KTETs-1 dlya doochistki stochnyih vod ot nefteproduktov [Granulated hydrophobic adsorbents based on carbonate sludge of HVO clarifiers KTETS-1 for post-treatment of sewage from oil products], Energy saving and water treatment, no.4, pp. 24–30 (in Russian). 8. Nikolaeva, L., Laptev, A., Golubchikov, M. (2015). Ochistka stochnih vod promishlenich predpriatii ot neftianihproduktov s ispolzovaniem granulirovanogo sorbsionogo sorbenta [Purification of industrial enterprises wastewater from petroleum products using new granular hydrophobic sorbents]. Nature, Environment and Pollution Technology, vol. 14, no. 3, pp. 685–690. 9. Palyutin, F., Baburina, V., Romakhin, A. (2006). Primenenie kremniyorganicheskoy zhidkosti «Silor» v neftedobyivayuschey promyishlennosti [The use of silicone fluid “Silor” in the oil industry], Bulletin of Kazan Technological University. no.2, pp.114–116 (in Russian). 10. Postanovlenie Pravitelstva RF from 15.04.2002 no.240. O poryadke organizatsii meropriyatiy po preduprezhdeniyu I likvidatsii razlivov nefti I nefteproduktov na territorii Rossiyskoy Federatsii [Decree of the Government of the Russian Federation №240 of April 15, 2002. On the procedure for organizing measures to prevent and eliminate oil and oil product spills in the territory of the Russian Federation]. Available at: document/cons_doc_LAW_36284/. 11. Postanovlenie Pravitelstva RF ot 21.08.2000 №613. O neotlozhnyih merah po preduprezhdeniyu I likvidatsii razlivov nefti I nefteproduktov [Decree of the Government of the Russian Federation of August 21, 2000 №613. On Urgent Measures for the Prevention and Elimination of Oil and Oil Products Spills]. Available at (in Russian). 12. Prikaz MChS Rossii ot 28.12.2004 №621. Ob utverzhdenii Pravil razrabotki I soglasovaniya planov po preduprezhdeniyu I likvidatsii razlivov nefti I nefteproduktov na territorii Rossiyskoy Federatsii [The order of the Ministry of Emergency Measures of Russia from 28.12.2004 No.621. About the statement of Rules of development and the coordination of plans on the prevention and liquidation of floods of oil and mineral oil in territory of the Russian Federation]. Available at: Normativno_pravovie_akti_Ministerstva/item/5380568. 13. Teplykh, S. (ed.) (2012). Vliyanie poverhnostnogo stoka s putey na vodnyie ob’ekty [Influence of surface runoff from paths to water objects]. Path and track economy: popular scientific and industrial journal, 2012, no.5, pp. 27–29 (in Russian). 14. Sirotkina, E., Novoselova, L. (2005), Polipropilenovyie voloknistyie materialyi dlya sorbtsii nefti I nefteproduktov s poverhnosti vody [Polypropylene fibrous materials for the sorption of oil and oil products from the surface of water], Environmental Protection in the Oil and Gas Complex, no.10, pp.14–21 (in Russian). 15. Shkolnikova, V. (ed.) (2010). Goryuchie, smazochnyie materialyi: Entsiklopedicheskiy tolkovyiy slovar-spravochnik [Flammable, lubricating materials: Encyclopaedic explanatory dictionary-reference]. Ext. M. OOO «Publishing Center» Tehinform «of the International Academy of Informatization», 756 p. (in Russian).


The main characteristics of one of the most effective physicochemical methods for purifi-cation of industrial sewage with the use of high-molecular flocculants, allowing to remove pollu-tants, such as heavy metals, from industrial wastewater are presented in the article. The article also provides a description of the described method of investigation, describes the main classes of reagents, presents the mechanism of action of substances. The results of studies of the application of anionic flocculants of the AK-631 series (A-1510, A-930) for flocculation of wastewater from industrial enterprises of various fields of activity are presented. Flocculation of disperse systems by polyelectrolytes is described. The values of turbidity, chromaticity, and flocculation activity of the reagents under consideration were determined. Graphic dependencies of the turbidity, chromaticity and flocculation activity on the volume of the reagent are given. The values of the percentage of the clarified part with the use of anionic flocculants are calculated. The results of cleaning model wastewater solutions of industrial production from heavy metal ions, such as iron and zinc, on the basis of the trial flocculation method are considered. The disclosed method allows to remove up to 98% of impurities, which allows one to con-clude that the purification process is effective with the use of the high-molecular polymers under consideration. The results of the research will allow to minimize costs, increase the efficiency, reliability and stability of the treatment facilities, improve the quality of water from surface water sources by reducing the reduction of the discharged pollutants with sewage.
Key words: sewage, purification, trial flocculation method, flocculant, turbidity, color, floc-culating effect, reagent activity, percentage of clarified part, iron, zinc
References: 1. Bayborodin, A.M. (2014). Lokal’naya ochistka stochnykh vod tsellyulozno-bumazhnykh predpriyatiy metodom koagulyatsii [Local wastewater treatment of pulp and paper enterprises by coagulation]. сand. tech. sciences. Arkhangelsk, 134 p. 2. Buzaeva, M.V. (ed.) (2008). Osnovy promyshlennoy ekologii: metodicheskie ukazaniya k laboratornym rabotam po distsipline «Osnovy promyshlennoy ekologii» [Bases of industrial ecology: methodical instructions to laboratory works on discipline «Bases of industrial ecology»]. U: USTU. 3. Butova, S.A. (ed.) (1997). Flokulyanty. Svoystva. Poluchenie. Primenenie [Flocculants. Properties. Receiving. Application] (ref. book). M: Stroyizdat. 4. Gandurina, L.V. (ed.) (1980). Vodorastvorimye polimery, ikh svoystva i oblasti primeneniya [Water-soluble polymers, their properties and fields of application] (overview of inf.). Issue. 12 (182). M: NIITEHIMPI. 5. Gandurina, L.V. (ed.) (2000). Organicheskie flokulyanty v tekhnologii ochistki prirodnykh i promyshlennykh stochnykh vod i obrabotki osadka (obzor informatsii) [Organic flocculants in the technology of purification of natural and industrial wastewater and treatment of sludge (review of information]. Issue. 2. M: VNIINTPI. 6. Gerasimov, G.N. (2001). Protsessy koagulyatsii-flokulyatsii pri obrabotke poverkhnostnykh vod [Processes of coagulationflocculation in the treatment of surface waters]. Water supply and sanitary engineering, 3, p. 1-5. 7. Getmantsev, S.V. (ed.) (2008). Ochistka proizvodstvennykh stochnykh vod koagulyantami i flokulyantami [Cleaning of industrial wastewater with coagulants and flocculants]. M: ASV. 8. Dryabina, S.S. (ed.) (2013). Metodicheskie ukazaniya k laboratornym rabotam №3, 4 k praktikumu po kolloidnoy khimii [Methodical instructions to laboratory works № 3, 4 to the workshop on colloid chemistry]. V: IUNL VolgSTU. 9. Zapolsky, A.K. (ed.) (1987). Koagulyanty i flokulyanty v protsessakh ochistki vody [Coagulants and flocculants in the process of water purification]. L: Chemistry. 10. Koagulyanty i flokulyanty: analiz i otsenka sovremennogo tekhnologicheskogo urovnya proizvodstva [Coagulants and flocculants: analysis and assessment of modern technological level of production (anal. review)] (2001). Ch: Cherkassk NIITEKHIM. 11. Kulikov, N.I. (ed.) (2009). Teoreticheskie osnovy ochistki vody [Theoretical basis of water treatment] (lect. notes). M: Donb. nat. acad. gr-va and architecture. 12. Terekhov, L.D. (ed.) (2014). Khimiya protsessov ochistki prirodnykh i stochnykh vod [Chemistry of purification processes of natural and waste water]. Kh: FENU. 13. Terekhova, E.L. (2004). Intensifikatsiya ochistki stochnykh vod ot poverkhnostno-aktivnykh veshchestv [Intensification of wastewater treatment from surfactants]. сand. tech. sciences. Khabarovsk, 178 p. 14. Kharitonov, V.P. (1998). Razvitie proizvodstva khimicheskikh reagentov dlya ochistki vody na OAO «Sorbent» [Development of production of chemical reagents for water purification at ОJSC «Sorbent»]. Q: Water: ecology and technology. M: p. 331. 15. Shachneva, E.Yu. (2011). Fiziko-khimiya adsorbtsii flokulyantov i sinteticheskikh poverkhnostno-aktivnykh veshchestv na sorbente SV-1-A [Physical chemistry of adsorption of flocculants and synthetic surface-active substances on sorbent SV-1-A]. сand. chem. sciences. Makhachkala, 139 p. 16. Ariffin, A. (2014). Effects of various fillers on anionic polyacrylamide systems for treating kaolin suspensions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 441, 306-311. 17. Xiao (2003). Organo-modified cationic silica nanoparticles/ anionic polymer as flocculants. Journal of Colloid and Interface Science, 267(2), 343-351. 18. Myagchenkov, V. A. (2000). Kinetics of the flocculation of ocher suspension in aqueous salt (NaCl) media under the action of polyacrylamide and its mixtures with poly(ethylene oxide). Zhurnal Prikladnoi Khimii (Sankt-Peterburg, Russian Federation), 73(12), 2030-2035. 19. Kurenkov, V. F. (1990). Intensification of treatment of electroplating wastewater by polyacrylamide flocculants. Khimiya i Tekhnologiya Vody, 12(9), 822-5. 20. Myagchenkov, V. A. (1990). Characteristics of flocculation of ocher and kaolin suspensions under simultaneous addition of anionic and cationic polyacrylamide flocculants. Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya, 33(2), 53-6. 21. Kurenkov, V. F. (1984). The influence of chemical inhomogeneity of a flocculant (copolymer of acrylamide with sodium acrylate) on the rate of sedimentation of an ocher suspension. European Polymer Journal, 20(8), 779-82.



This article is devoted to the history of the measures, connected with rational use of the water resources of the North-West of Russia in the first years after Revolution of 1917. The information about the designing of the hydro-electric power stations on the rivers Swir and Volhow by the Russian architects V. Pokrowsky, O. Munz, A. Dmitriev is presented. The personal contribution of the architect O.Munz to the design of the Volhow hydro-power station is regarded in this article. The questions, connected with the ecology of the construction of this hydro-power station and the use of the water resuorces there, are also regarded in this article.
Key words: the use of water resources, architecture, first Soviet hydro-power stations, the versions of architectural designs, the questions of ecology.


An estimation of the influence of industrial buildings with aeration on air quality of industrial sites and cities is considered. The air environment of an industrial site is considered as a single dynamic system with the air environment of a production building. The object of a study is a production building with a complex profile with open aeration openings - a blocked oxygen-converter shop, saturated with technological lines, built-in premises, multi-site platforms. The regularities of the distribution of the released hazards with aeration flows in the building and on the industrial site during the flow around the building by the wind flow are investigated. The test data of building models in a volumetric hydraulic tray are given. Various roof inclinations have been investigated over the separation of continuous casting of steel: "small-inclined", "with fracture", "steeply inclined". A qualitative picture of flow around the building with flow, as well as aeration flows in the shop, with various space-planning solutions of the workshop are obtained. A distinction between the nature of air flow around the building with aeration openings and lanterns from buildings with impenetrable fences is made. Steady aeration flows, formed under the influence of wind in the interlocked shop, are revealed. Simulation results in a volumetric hydraulic tray might be used to evaluate the results of numerical simulation in the environmental assessment of the impact of industrial buildings with aeration on urban air quality
Key words: air quality, aerodynamics of industrial buildings, aeration.
References: 1. Dacyuk, T.A. (2009). Inzhenernye aspekty ehnergosberezheniya zdanij. ACADEMIA, № 5, pp. 326–328. 2. Datciuk, T. (2016). Forecasting of ecological situation in course of buildings’ design. Architecture and Engineering, 1(2), pp. 19–22. Available at: 3. Dacyuk, T.A., Vasil’ev, V.F., Deryugin, V.V., Ivlev, YU.P. (2005). Novaya tekhnologiya proektirovaniya sistem obespecheniya mikroklimata zdanij. Vestnik grazhdanskih inzhenerov, №3(4), pp. 57–62. 4. Dacyuk, T.A., Vasil’ev, V.F., Deryugin, V.V., Ivlev, YU.P. (2012). Raschet aehracii cekhov s teplogazovydeleniyami. Santekhnika, otoplenie, kondicionirovanie, № 1 (121), pp. 122–125. 5. Dacyuk, T.A., Deryugin, V.V., Vasil’ev, V.F., Ivlev, YU.P. (2003). Analiz rezul’tatov fiziko-matematicheskogo modelirovaniya pri reshenii zadach promyshlennoj ventilyacii i ohrany atmosfery. Izvestiya vysshih uchebnyh zavedenij. Stroitel’stvo, № 9, pp. 95– 99. 6. Dacyuk, T.A., Vasil’ev, V.F., Ivlev YU.P. (2004). Fizikomatematicheskoe modelirovanie processov ventilyacii i rasseivaniya vybrosov v atmosfere. Aktual’nye problemy sovremennogo stroitel’stva. 56-ya Mezhdunarodnaya nauchno-tekhnicheskaya konferenciya molodyh uchenyh. Sbornik dokladov. CH. II. SPbGASU. SPb. s. 217-219. 7. Konstantinova, Z.I. (1981). Zashchita vozdushnogo bassejna ot promyshlennyh vybrosov. M.: Strojizdat, s. 104. 8. Ministerstvo regional’nogo razvitiya Rossijskoj Federacii, (2011). Proizvodstvennye zdaniya. SP 56.13330.2011. Moskva: Minregion Rossii. 9. Minprirody Rossii, (2016). Gosudarstvennyj doklad «O sostoyanii i ob ohrane okruzhayushchej sredy Rossijskoj Federacii v 2015 godu». M.: NIA-Priroda, s. 639. 10. Nikitin, V.S., Maksimkina, N.G., Samsonov, V.T., Plotnikova L.V. (1980). Provetrivanie promyshlennyh ploshchadok i prilegayushchih k nim territorij. M:. Strojizdat, s. 200. 11. Poddaeva, O.I., Dunichkin, I.V. (2017). Arhitekturnostroitel’naya aehrodinamika. Vestnik MGSU. T. 12. № 6 (105), s. 602-609. 12. Poddaeva, O.I., Kubenin, A.S., CHurin, P.S. (2015). Arhitekturno-stroitel’naya aehrodinamika. M.: NIU MGSU, s. 88. 13. Polyakov, V.V., Latyshenkov, M.A. (1970). Issledovanie aehrodinamiki v ob»emnom gidravlicheskom lotke. Voprosy teplovlazhnostnogo i vozdushnogo rezhimov kondicionirovaniya mikroklimata, №68. M.: Moskovskij inzhenerno-stroitel’nyj institut, s. 95-100. 14. Polushkin, V.I., Vasil’ev, V.F., Titova, A.I. (2009). Ventilyaciya cekhov s vysokim teplonapryazheniem vnutrennego ob»ema. Vestnik MANEHB. Periodicheskij teoreticheskij i nauchnoprakticheskij zhurnal. T. 14, № 1, SPb. s. 47 – 52. 15. Retter, EH.I. (1984). Arhitekturno-stroitel’naya aehrodinamika. M.: Strojizdat, s. 294. 16. Samsonov, V.T. (2016). Provetrivanie promyshlennyh ploshchadok: Aehrodinamicheskie raschety pri proektirovanii ventilyacionnyh vybrosov. M.: Infra-M, s. 172. 17. Serebrovskij, F.L. (1985). Aehraciya naselennyh mest. M.: Strojizdat, s. 172.


On the example of the parallel consideration of urban planning and planning development of St. Petersburg and Samara in the XVIIIXX centuries. various variants of the inclusion of water spaces in urban development systems and their urban centers are shown (Samara - with the cape location of the prototype and its linear development along one bank of the Volga River, St. Petersburg - originally by the method of multislot development around the main Neva area), creating special composite and functional solutions.
Key words: Samara, St. Petersburg, town planning and planning development, water areas.
References: 1. Balzannikov, M. I., Rodionov, M. V. (2013). Extending the Operating life of low Embankment Dams in Russia. International Journal on Hydropower and Dams. T.20. №6. pp. 60–63 2. Bulatov, G., Ibraeva, Y., Tarasevskii, P. (2016). Computing values of crack characteristics on earth dam. Procedia Engineering, T.165, pp.1611–1618 3. Sementsov, S., Lavrov, L. (2015). Flood risk in Saint Petersburg. Russia: history and modern times. Civil Engineering. Special issue. Vol. 168. IssueCE5, pp. 3–16. 4. Laskovskij, F. F. (1866). Materialy dlya istorii inzhe- nernogo iskusstva v Rossii. CH. III: Karty, plany i chertezhi. SPb., g. Fig. 15. 5. Sinel'nik, A. K. (2003). Istoriya gradostroitel'stva i zaseleniya Samarskogo kraya. Samara, 228 s. 6. Bal'zannikova, E. M. (2014). Vliyanie rek na formirova- nie promyshlennyh territorij goroda Samary. Nauchnoe obo- zrenie, №6, cc. 49–55. 7. Sapozhnikova, I. V. (2008). Arhitekturnaya ehnciklopediya gubernskogo goroda Samary. Samara: Izd. dom «Agni», 272 s. 8. Ahmedova, E. A., Gnilomedov, A. S. (2014). Rabochie po- selki sovetskoj industrializacii i ih rol' v razvitii ar- hitekturno-planirovochnoj sistemy g. Kujbysheva (Samary). Arhitektura i stroitel'stvo Rossii, № 7. ss. 20–27. 9. Gel'fond, A. L., Ahmedova, E. A. (2015). Formirovanie arhitekturno-prostranstvennoj struktury volzhskih nabe- rezhnyh na primere Nizhnego Novgoroda i Samary. Arhitektu- ra i stroitel'stvo Rossii, №7, ss. 2–15. 10. Ahmedova, E. A., Stepanov, A. K. (2017). Gradostroi- tel'naya koncepciya vklyucheniya pojmennyh territorij reki Sa- mary v funkcional'no-planirovochnuyu strukturu megapolisa. V sbornike: Tradicii i innovacii v stroitel'stve i arhitek- ture, ss. 15–18. 11. Burovskij, A. M. (2003). Peterburg kak geograficheskij fenomen. SPb., 214 s. 12. Malinovskij, K. V. (2007). Domeniko Trezini. SPb.: Kriga, 412 s. 13. Sementsov, S. Saint Petersburg Stedebouw. De stedebouwkundige wording van Sint Petersburg // Sint Petersburg stadaan het water. Amsterdam, 1997. P. 1-25, ill. 14. Semencov, S. V., Krasnikova, O. A., Mazur, T. P., SHra- der, T. A. (2004). Sankt-Peterburg na kartah i planah pervoj poloviny XVIII veka. SPb., 436 s. 15. Bunin, M. S. (1986). Mosty Leningrada. L., 198 c. 16. Semencov, S. V. (2011). Gradostroitel'noe razvi- tie Sankt-Peterburga v XVIII – nachale XXI veka. T. 1. Razvitie territorij Prinev'ya do osnovaniya Sankt-Peterburga. Razvi- tie Sankt-Peterburga v XVIII veke. SPb.: SPbGASU, 524 s. 17. Baranov, N. V. (1966). Novye primorskie ansambli Le- ningrada. Stroitel'stvo i arhitektura Leningrada, № 11, cc. 29–34. 18. Kamenskij, V. A., Naumov, A. I. (1966). General'nyj plan razvitiya Leningrada. L., 412 c. 19. Naumov, A. I. (1972). Leningrad vyhodit k moryu (o proekte planirovki i zastrojki pribrezhnyh rajonov goroda). Stroitel'stvo i arhitektura Leningrada, № 10, cc. 14–22. 20. Semencov, S. V. (2012). Sankt-Peterburg v planah i kar- tah. XX vek. SPb.: Severo-Zapadnyj Kartograficheskij Centr, 424 s. 21. Semencov, S. V. (2014). Osvoenie pod zastrojku pri- brezhnyh akvatorij Sankt-Peterburga v XVIII – nachale XXI veka. SPb.: Nestor-Istoriya, cc. 172 –191. 22. Sementsov, S. V. (2014). Regularities of creating in the XVIII – mid XX centuries a regular agglomeration of St. Petersburg – Leningrad and problems of its preservation as a world heritage object. Advanced Materials Research, vol. 1020, pp. 651–654.


This article discusses the issues related to technologies for creating energy efficient and environmentally safe object construction in modern urban areas. Weakly affected urban areas and the interests of people for the humanization of their living environment from the perspective of ecology. The man plays the role of a Builder, had created an unbalanced mechanism of production of objects of urban development, when their construction is certainly better organized than the rest of the life processes, especially the process of their disposal. As a result, began accumulating mountains of waste associated with end-ofurban areas. Arouse an environmental problem! If a modern builder more diligently studied nature, he hardly would have created such an unbalanced mechanism of production of modern construction sites. In addition, the active use of the experience of nature would allow him to obtain effective, environmentally friendly architectural and structural systems of buildings and structures. It is proposed to use the tools of environmental engineering, principles and regularities of architectural bionics in the practice of design and construction of urban development compatible with the natural environment.
Key words: environment, architectural bionics, mathematical model optimization, the bearing capacity design, computer-aided design (CAD), energy efficient design, energy efficient building, ecological architecture, energy-active buildings
References: 1.Temnov V. G.(2010). The adoption of constructive solutions in the design of artificial habitat. Topical issues of improving the system of higher education. SB-K]. papers number 2.- SPb.: Nevsky Institute of management and design, pp. 183 - 191. 2. Rusanov G. E. (2004). Structure architectural ensembles of the city. SPb.: Spbgasu, 190s. 3.Reimers.N. F.(1994). Ecology: theories, laws, rules, principles and hypotheses.- M.: Thought. 336 p. 4.Reutskaya I. P.( 2004). The ecological approach to the architectural design of residential buildings // journal of BAARH no.1, pp. 39-42. 5. Overview(2006). Problems architectural ecology.- M.: VNIITAG of Moskomarhitektury. 61C. 6. Balandin R. K. (2001).Ecology: Man and nature. -M .: OLMA-PRESS. 7. Snitkovsky A. F. (ed) (2001). The problem of geoactivity and its relationship with the geological situation in the St. Petersburg region.SB-K materials U -th international conference «Environment and development North-West of Russia». 11-16 July 2001. SPb.: MANEB. 304s. 8.Shevtsov, K. K. (1994).Protection of the natural environment in construction. - M.: Publishing house: Higher. SHK. 240 p.: Il. 9. Temnov V. G.(2001). Structural systems in nature and building technology (resource-Saving technologies of design).- SPb.: Izd-vo «komp’yuterburg» . 65C. :Il. 10. Tetior A. N.( 1994). Construction ecology.- Kiev: UMQUA. 273s. 11. Mazur I. I.(1999). The course of environmental engineering.-M.: Vyssh. SHK. 447 S.: ill. 12. Schmidt - Nielsen K.(1987). A: why is animal size so important ?: Per. from English.- M. The World. 259с. 13.Lebedev Y. S.(EDS) (1990). Architectural bionics - M.: Stroyizdat. 260C.:Il. 14..Temnov V. G.(2001) Architectural design of urban development based on bionic principle transtorno - polygon structures. Collection of the materials of the international scientificpractical conference on April 16-17, 2001. «Post-Soviet urban planning. Problems and prospects» - SPb.:Publishing house» INTAN». 211с. 15.Correa Ch.M. (1972) Patterns of Urban Crowts. Existics,vol.34, December, No. 205, pp.15-21


The formation of diffuse pollution in the catchment areas of rivers and water bodies mainly by surface overland flow is considered. It is shown that in comparison with the time of normal annual runoff calculations by K. P. Voskresensky (1962) the surface overland flow during the flood period decreased currently from 2 times in the northern forest-steppe of the Russian European part to more than 10 times in the southern part of the steppe zone, mainly due to changes in climatic conditions. If not for the reduction in the area of autumn ploughing, characterized by low surface overland flow, this reduction would be even greater. In addition to that the ground overland flow increased during the warm period of the year. Accordingly, the share of warm season in diffuse pollution of rivers and reservoirs increased largely due to contaminated slope groundwater inflow.
Key words: diffuse pollution, catchment area, slope, drainage network, surface and ground overland flow
References: 1. Barabanov A.T., Kachkar’ M.N. (2002) Samoreguliruyushchaya i protivoehrozionnaya rol’ razlichnyh agrofonov v Nizhnem Povolzh’e [Self-regulatory and anti-erosion role of various agrophones in the Lower Volga Region]. In: Sovremennye problemy zemledeliya i ehkologii. Kursk, pp. 126–131. 2. Barabanov A.T., Panov V.I. (2012). K voprosu o prognoze poverhnostnogo stoka talyh vod v lesostepnoj i stepnoj zonah [On the issue of the forecast of the meltwater surface runoff in the foreststeppe and steppe zones]. Aridnye ehkosistemy. V. 18. № 4 (53). pp. 22–27. 3. Shiklomanov I. (ed.) (2008). Vodnye resursy Rossii i ih ispol’zovanie [Water resources of Russia and their use] SPb: GGI, 598 p. 4. Vodogreckij V.E. (1979) Vliyanie agrolesomelioracij na godovoj stok: metodika issledovanij i raschety [The influence of agroforestry improvement on annual runoff: research methodology and calculations]. L.: Gidrometeoizdat, 184 p. 5. Grin A.M. (1963). Dinamika vodnogo balansa Central’noCHernozemnogo rajona [Dynamics of the water balance of the Central Black Earth region]. M.: Nauka, 148 p. 6. Dzhamalov R.G., Frolova N.L., Kireeva M.B. et. al. (2015). Sovremennye resursy poverhnostnyh i podzemnyh vod evropejskoj chasti Rossii: Formirovanie, raspredelenie, ispol’zovanie [Modern resources of surface and groundwater in the European part of Russia: Formation, distribution, use]. M.: GEOS, 320 p. 7. Dolgov S.V., Shaporenko S.I., Sencova N.I. (2010). Sovremennoe sostoyanie vodnyh resursov v Rostovskoj oblasti [Current state of water resources in the Rostov Region]. Aridnye ehkosistemy. V. 16. № 4(44). pp. 49–62. 8. Zakrutkin V.E., Koronkevich N.I., Shishkina D.YU., Dolgov S.V. (2004). Zakonomernosti antropogennogo preobrazovaniya malyh vodosborov stepnoj zony YUga Rossii (v predelah Rostovskoj oblasti) [The patterns of the small catchments anthropogenic transformation in the steppe zone of the South of Russia (within the Rostov region)]. Rostov-on-Don: Izd-vo Rost. un-ta, 252 p. 9. Kondrat’ev S.A. (1990). Ocenka vozmozhnyh antropogennyh izmenenij stoka i vynosa biogennyh ehlementov s malyh vodosborov lesnoj zony na osnove matematicheskoj modeli [Assessment of possible anthropogenic changes in runoff and biogenic elements export from small catchments in the forest zone on the basis of a mathematical model]. Vodnye resursy. №3. pp. 24–32. 10. Koronkevich N.I. (1990). Vodnyj balans Russkoj ravniny i ego antropogennye izmeneniya [The water balance of the Russian Plain and its anthropogenic changes]. M.: Nauka, 204 p. 11. L’vovich M.I. (1963). Chelovek i vody [Man and water]. M.: Geografgiz, 568 p. 12. Nazarov N.A. (1996). Ocenki ehrozionnogo smyva pochv i vynosa biogennyh ehlementov s poverhnostnym stokom talyh i dozhdevyh vod v rechnom bassejne [Estimates of erosive flushing of soils and biogenic elements export with melted and rainwater surface runoff in the river basin] Vodnye resursy. V 23. № 6. pp. 645–652. 13. Petel’ko A.I., Panov V.I. (2014). Harakteristika poverhnostnogo stoka talyh vod s raznyh ugodij za 50 let [Characteristics of the meltwater surface runoff from different lands in 50 years]. Vestnik APK Stavropol’ya. № 4(16). pp. 155–162. 14. Pryazhinskaya V.G. (2001). Matematicheskie modeli vynosa biogennyh veshchestv s sel’skohozyajstvennyh ugodij [Mathematical models of nutrient export from agricultural lands]. In: Voda Rossii. Matematicheskoe modelirovanie v upravlenii vodopol’zovaniem. Moscow, Izd-vo Akva-press. pp. 130–140. 15. Hrisanov N.I., Osipov G.K. (1993). Upravlenie ehvtrofirovaniem vodoemov [Reservoirs eutrophication management]. SPb.: Gidrometeoizdat. 279 p. 16. Chernyshev E.P., Barymova N.A., Ivanova N.B., Kitaev L.M. (1992). Prostranstvenno-vremennaya differenciaciya gidrologicheskih processov i svyazannogo s nimi veshchestvennogo obmena v sisteme «vodosbor-reka» [Spatial-temporal differentiation of hydrological processes and associated material exchange in the «watershed-river» system]. In: Geografo-gidrologicheskie issledovaniya. M.: IG RAN, MC GO RF. pp. 4–26. 17. Chuyan G.A., Bojchenko Z.A., Tur O.P. (1985). Metodicheskie rekomendacii po ocenke vynosa biogennyh veshchestv poverhnostnym stokom [Methodical recommendations on assessment of nutrient export by surface runoff]. M.: VASKHNIL. 32 p. 18. Shil’krot G.S., YAsinskij S.V. (2002). Prostranstvennovremennaya izmenchivost’ potoka biogennyh ehlementov i kachestva vody maloj reki [Spatial-temporal variability of the biogenic elements flow and water quality of a small river]. Vodnye resursy. V.29. №3. pp. 343–349.


The occurrence of problems related to the shortage of water resources and the consequent higher difficulties in meeting the needs of users, require studies aimed at identifying possible interventions for the increase in water availability. They are mainly the large drinking water infrastructure for multiple purposes that are in crisis in meeting the needs on a local basis. In such circumstances, rationalization and integration of water resources should be sought through the use of unconventional supply systems. This is the case of the Alto Ionio Cosentino (Region Calabria, Southern Italy), a territory characterized by a significant water deficit, competition between drinking and irrigation use and an inefficient water supply system in terms of satisfying demand. Through the optimization of the allocation of water resources, to overcome the problems of the territory, this paper assesses the possibility of a combined use between desalination of sea water and reuse of wastewater to meet the drinking needs and to increase irrigation requirements.
Key words: water scarcity, competition between water uses, reuse of wastewater, desalination, sustainable management of water systems
References: 1. Alexandratos, N., Bruinsma J. 2012 World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO 2. Alperovits E., Shamir U. Design of optimal water distribution systems. Water Resour. Res. 1977, 13 p. 885–900 doi:10.1029/ WR013i006p00885. 3. Angelakis A.N., Marecos Do Monte M.H.F., Bontoux L., Asano T.. The status of wastewater reuse practice in the mediterranean basin: need for guidelines. Wat. Res. 1999 33 p. . 4. Bahri, A. Agricultural reuse of wastewater and global water management. Water Sci. Technol. 1999 40 p. 339–346, doi:10.1016/ S0273-1223(99)00516-8. 5. Bai L. et al. Theoretical considerations of joint optimal model for water allocation and pipe placement. Applied Mechanics and Materials 2013 316-317 p. 715-718 6. Becker N., Lavee D., Katz D. Desalination and Alternative Water-Shortage Mitigation Options in Israel: A Comparative Cost Analysis. J. Water Resource and Protection 2010 2 p.1042-1056 . 7. Bonomo L., Nurizzo C., Rolle E. Advanced wastewater treatment and reuse: related problems and perspectives in Italy. Water Science & Technology 1999 40 pp.21-28. 8. Carini, M.; Maiolo, M.; Pantusa, D.; Chiaravalloti, F.; Capano, G. Modelling and optimization of least-cost water distribution networks with multiple supply sources and users: A Matlab-based approach. Ric Mat 2017, DOI: 10.1007/s11587-017-0343-y 9. Cunha M.D.C., Sousa, J. Water distribution network design optimization: simulated annealing approach. J Water Res Pl-Asce 1999, 125 p. 215-221. 10. European Environmental Agency (EEA). Climate Change, Impacts and Vulnerability in Europe 2016—An Indicator-Based Report; Report No. 1/2017; European Environmental Agency (EEA): Copenhagen, Denmark, 2016; ISSN 1977-8449. 11. FAO (2010). The wealth of waste: The economics of wastewater use in agriculture. Water Report, 35, Rome: Food and Agriculture Organization of the United Nations. 12. Frapiccini A. 2004 Medioriente, luci e ombre della dissalazione per lo sviluppo delle risorse idriche, Aracne Editrice, Roma, maggio 2004, ISBN: 8879996606. 13. Friedler E. The Jeezrael Valley Project for Waste Water Reclamation and Reuse, Israel. Water Sci. Technol. 1999 40 p. 347– 354, doi:10.1016/S0273-1223(99)00517-X. 14. Friedler, E. Water reuse - an integral part of water resorces management: Israel as a case study. Water Policy 3 (2001) 29–39 15. Fritzmann C., Löwenberg J., Wintgens T., Melin T. State-of-theart of reverse osmosis desalination, Desalination 2007 216 p. 1-76, 16. Ghaffour N., Missimer T. M., Amy G. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 309 p. 197-207 17. Giustolisi O., Laucelli D., Colombo A.F. Deterministic versus stochastic design of water distribution networks. J Water Res PlAsce 2009 135 p. 117-127. 18. Hanjra M.A., Drechsel P., Mateo-Sagasta, J., Otoo, M., Hernandez, F. 2015 Assessing the finance and economics of resource recovery and reuse solutions across scales. In Wastewater: Economic Asset in an Urbanizing World. Drechsel et al. (eds), Springer. 19. IDA 2012 Desalination Yearbook, International Desalination Association, 20. IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. 21. Karagiannis C., Soldatos P.G. Water Desalination Cost Literature: Review and Assessment. Desalination 223, pp. 448-456. 22. Lansey K.E., Mays L.W. Optimization model for water distribution system design. J. Hydraul. Eng. 1989, 115, p. 1401– 1418, doi:10.1061/(ASCE)0733-9429(1989)115:10(1401). 23. Lopez A., Pollice A., Lonigro A., Masi S., Palese A. M., Cirelli G.L., Toscano A. Passino, R. Agricultural wastewater reuse in southern Italy. Desalination 2006 187 p. 323–334. 24. Maiolo M., Mendicino G., Pantusa D., Senatore A. Optimization of Drinking Water Distribution Systems in Relation to the Effects of Climate Change. Water 2017, 9 p. 803; doi:10.3390/w9100803 25. Maiolo M., Pantusa D. A methodological proposal for the evaluation of potable water use risk. Water Pract. Technol. 2015, 10 p.152–163, doi:10.2166/wpt.2015.017. 26. Maiolo M., Pantusa, D. An optimization procedure for the sustainable management of water resources. Water Sci Tech-W Sup. 2016 16 p. 61–69, doi:10.2166/ws.2015.114. 27. Maiolo, M.; Pantusa, D. A proposal for multiple reuse of urban wastewater. J Water Reuse Desal 2017 doi:10.2166/wrd.2017.144. (in press) 28. Mansouri N.Y., Ahmed F., Ghoniem A.F. Does nuclear desalination make sense for Saudi Arabia?. Desalination 2017 406 p. 37–43. 29. Mendicino G., Senatore A., Versace P. 2008 A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Journal of Hydrology 357 p. 282– 302. 30. Moreno J.M., Chabalina L.D. Economic analysis of water reuse in Spain WIT Transactions on Ecology and the Environment 2008 112, ISSN 1743-3541 doi:10.2495/SI080321 31. Ni J. et al.: A Multiagent Q-Learning-Based Optimal Allocation Approach for Urban Water Resource Management System, IEEE Transactions on Automation Science and Engineering 2014 11(1), 204-214 32. Pearce J., Albritton S., Grant G., Steed G., Zelenika, I. A new model for enabling innovation in appropriate technology for sustainable development. Sustainability: Science, Practice, and Policy 2012 8 pp. 42-53. 33. Shelef G., Azov Y. The coming era of intensive wastewater reuse in the mediterranean region. Water Sci. Technol. 1996 33 p.115–125, doi:10.1016/0273-1223(96)00413-1. 34. Sun W., Zeng Z. City optimal allocation of water resources research based on sustainable development. Advanced Materials Research 2012 446 p. 2703-2707

DOI: 10.23968/2305-3488.2017.22.4.111-115

The actions reducing a possibility of water contamination in operated reservoirs for domestic and drinking water supply are considered. In the construction of reservoirs, measures are envisaged to eliminate the direct contact of the internal space of the reservoir with atmospheric air, as well as the organization of air exchange through absorber filters (FP) to purify incoming air. The air inlet and outlet when changing the water level in the tank, as well as the air exchange in the tanks, are provided through ventilation devices, which exclude the possibility of a vacuum exceeding 800 Pa. A technique for calculating the vacuum in reservoirs during their emptying is proposed. The modes of operation of ventilation systems have been determined and investigated, which make it possible to ensure the safe operation of reservoirs.
Key words: water supply systems, clean water tank, ventilation devices
References: 1. Alekseev, S. N., Ivanov, F. M., Modry, S., Shissl, P. (1990). Dolgovechnost’ zhelezobetona v agressivnyh sredah [Durability of reinforced concrete in corrosive environments.]. M.: Strojizdat, 320 p. (in Russian).
2. Anvarov, B. R., Latypova, T. V., Latypov, V. M. Kramar, L. Ya. (2015). K voprosu o mekhanizme povrezhdeniya zhelezobetona pri korrozii vyshchelachivaniya [On the issue of the mechanism of damage to reinforced concrete during the corrosion of leaching]. Izvestiya vysshih uchebnyh zavedenij. Stroitel’stvo, № 2 (674), pp. 12–26. (in Russian).
3. Afanasev, A. A.; Belyaeva, D. M.; Shaporenko, V. N.; Rodionov, A. E. (2015). Novoe oborudovanie dlya bezopasnogo vozduhoobmena v rezervuarah chistoj vody [New equipment for safe air exchange in clean water tanks]. Vodosnabzhenie i sanitarnaya tekhnika, № 7, pp. 60–64. (in Russian).
4. Bajkov, V.N. (red.) (1985). ZHelezobetonnye konstrukcii [Reinforced concrete structures]. M.: Strojizdat, 767 p.
5. GPI Santekhproekt (1979). Rukovodstvo po raschetu vozduhovodov iz unificirovannyh detalej [Manual for the calculation of air ducts from unified parts.]. Seriya A3-804. M., 205 p.
6. GPI Soyuzvodokanalproekt (1983). Tipovoj proekt 901-4- 63.83. Rezervuary dlya vody pryamougol’nye zhelezobetonnye sbornye emk. ot 50 do 20000 m3 (s primeneniem izdelij promzdanij). Al’bom II. Materialy dlya proektirovaniya special’nyh meropriyatij dlya rezervuarov emk. ot 50 do 20000 m3 sistem hozpit’evogo vodosnabzheniya [Reservoirs for water rectangular reinforced concrete prefabricated tanks. from 50 to 20,000 m3 (with the use of products of industrial facilities). Album II. Materials for designing special events for tanks. from 50 to 20,000 m3 of drinking water supply systems.]. M., 13 p.
7. Zhurba, M. G., Sokolov, L. I. Govorova, Zh. M. (2004). Vodosnabzhenie. Proektirovanie sistem i sooruzhenij [Water supply. Design of systems and structures]. M.: Izdatel’stvo ASV, 256 p. (in Russian).
8. Idelchik, I. E. (1992). Spravochnik po gidravlicheskim soprotivleniyam [Reference book on hydraulic resistance.]. M.: Mashinostroenie, 672 p. (in Russian).
9. Ministerstvo stroitel’stva i zhilishchno-kommunal’nogo hozyajstva Rossijskoj Federacii, (2012). Vodosnabzhenie. Naruzhnye seti i sooruzheniya [Water supply. External networks and facilities.]. SP 31.13330.2012. Moskva: Minstroj Rossii. Available at:
10. Moskvitin, B. A., Mironchik, G. M., Moskvitin A. S. (1984). Oborudovanie vodoprovodnyh i kanalizacionnyh sooruzhenij [Equipment for water supply and sewerage facilities.]. M.: Strojizdat, 192 p. (in Russian).
11. Nazarov, I. A. (red.) (1977). Vodosnabzhenie naselennyh mest i promyshlennyh predpriyatij [Water supply of populated areas and industrial enterprises.]. M.: Strojizdat, 288 p. (in Russian).
12. NII KVOV AKH im. K. D. Pamfilova (1989). Posobie po poektirovaniyu sooruzhenij dlya ochistki i podgotovki vody (k SNiP 2.04.02-84 «Vodosnabzhenie. Naruzhnye seti i sooruzheniya») [Manual for designing facilities for water treatment and treatment (to SNiP 2.04.02-84 «Water supply. External networks and facilities»)]. M.: CITP Gosstroya SSSR, 128 p. (in Russian).
13. Pavlov, N. N., Shiller, Yu. I. (red.) (1992). Vnutrennie sanitarno-tekhnicheskie ustrojstva. V 3 ch. CH.3. Ventilyaciya i kondicionirovanie vozduha. Kn. 2. [.Internal sanitary equipment. At 3 p. Ventilation and air conditioning. Book. 2] M.: Strojizdat, 416 p. (in Russian).
14. Federal’nyj centr gossanehpidnadzora Minzdrava Rossii (1998). Sanitarnyj nadzor za primeneniem ul’trafioletovogo izlucheniya v tekhnologii podgotovki vody: Metodicheskie ukazaniya [Sanitary supervision of the use of ultraviolet radiation in water treatment technology: Methodological guidelines]. M., 16 p. (in Russian).
15. Federal’nyj centr gossanehpidnadzora Minzdrava Rossii (2005). Ispol’zovanie ul’trafioletovogo baktericidnogo izlucheniya dlya obezzarazhivaniya vozduha v pomeshcheniyah: Rukovodstvo [Use of ultraviolet germicidal radiation for indoor air disinfection: Manual.]. M., 46 p. (in Russian).