Archive logs by year

№1

Dremicheva E. S., Shamsutdinov E. VINTENSIFICATION OF SEDIMENTATION TREATMENT OF WASTEWATER FROM OIL PRODUCTS
DOI: 10.23968/2305–3488.2018.23.1.3–8

The separation of water-oil emulsions in gravity sedimentation tanks is the simplest in the instrumental design process. However, when using hollow containers as settlers, the efficiency of the separation process is limited by a number of factors. The method of separation of water-oil emulsions for cleaning oily wastewater in gravity sedimentation tanks by analogy with the separation of emulsions during oil extraction is considered in the article. Experimental studies have been carried out, according to which the dependence of the ascent has been obtained, consistent with the analogous works of other authors. To intensify the separation process, the possibility of adding a surfactant, which increased the efficiency of gravity deposition from 50 to 75 %, was considered. The efficiency was also evaluated when the acidity of the medium and salt content changed. The obtained positive results can be used on the existing standard equipment for separation of oil products from sewage with the help of surfactants, as well as in the modernization of industrial settling apparatus.
Key words: wastewater treatment, water-oil emulsions, sedimentation, demulsified, surfactant, MPC.
References: 1. Veprikova, Ye. V., Tereshchenko, Ye. A., Chesnokov, N. V. (2010). Osobennosti ochistki vody ot nefteproduktov s ispol’zovaniyem neftyanykh sorbentov, fil’truyushchikh materialov i aktivnykh ugley [Features of water purification from petroleum products using oil sorbents, filtering materials and active coals]. Journal of Siberian Federal University. Chemistry, № 3, pp. 285–303. (in Russian).
2. Gladiy, Ye. A., Kemalov, A. F., Gaynullin, V. I., Bazhirov, T. S. (2015). Otsenka effektivnosti shiroko primenyayemykh reagentov-deemul’gatorov dlya obezvozhivaniya nefti termokhimicheskim sposobom [Evaluation of the efficiency of widely used reagents-demulsifiers for dehydration of oil by a thermochemical method]. Ekspozitsiya neft’ gaz, № 5 (44), pp. 16–18. (in Russian).
3. Zachinyayev, Ya. V., Sergiyenko, Yu. V., Gladilin, Yu. A., Kharitonenko, A. L. (2012). Modul’nyye peredvizhnyye ustanovki s vozdeystviyem na vodoneftyanyye emul’sii magnitnym polem [Modular mobile installations with influence on water-oil emulsions by a magnetic field]. Aktual’nyye problemy gumanitarnykh i yestestvennykh nauk, № 3, pp. 46–51. (in Russian).
4. Kashayev, R. S., Faskhiyev, N.R. (2011). Obezvozhivaniye neftey vo vrashchayushchemsya magnitnom pole i kontrol’ protsessa metodom YAMR-relaksometrii [Dewatering of oils in a rotating magnetic field and process control by NMR-relaxometry]. Neftepromyslovoye delo, № 6, pp. 49–55. (in Russian).
5. Laptev, A. G., Sergeyeva, Ye. S. (2011). Vodopodgotovka i vodoochistka v energetike. Chast’ 2 [Water treatment in power engineering. Part 2]. Voda: khimiya i ekologiya, № 4, pp. 32–37. (in Russian).
6. Minzdrav Rossii (2000). Gigiyenicheskiye trebovaniya k okhrane poverkhnostnykh vod [Hygienic requirements for the protection of surface waters]. SanPiN 2.1.5.980-00. M.: Federal’nyy tsentr gossanepidnadzora Minzdrava Rossii. (in Russian).
7. Pozdnyshev, G. N. (1982). Stabilizatsiya i razrusheniye emul’siy [Stabilization and destruction of emulsions]. M.: Nedra, 221 p. (in Russian).
8. Putilov, V.Ya. (ed.) (2003). Ekologiya energetiki [Ecology of power engineering]. M.: MEI, 715 p. (in Russian).
9. Rasulov, S. R., Rzayev, A. G, Nuriyeva, I. A. (2016). Opredeleniye agregativnoy ustoychivosti i dispersnogo sostava neftyanoy emul’sii [Determination of aggregative stability and dispersed composition of oil emulsion]. In: Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 60-letiyu vysshego obrazovaniya v Respublike Tatarstan «Dostizheniya, problemy i perspektivy razvitiya neftegazovoy otrasli». Al’met’yevsk: AGNI, pp. 48–51. (in Russian).
10. Semikhina, L. P., Moskvina, Ye. N., Kol’chevskaya, I. V. (2012). Vliyaniye fiziko-khimicheskikh svoystv reagentov na kinetiku razrusheniya vodoneftyanykh emul’siy pri razlichnykh temperaturakh [Influence of physical and chemical properties of reagents on the kinetics of destruction of water-oil emulsions at different temperatures]. Vestnik Tyumenskogo gosudarstvennogo universiteta, № 5, pp. 72–79. (in Russian).
11. Semikhina, L. P., Semikhin, D. V., Perekupka, A. G. (2003). Podbor deemul’gatorov s uchetom temperaturnogo rezhima podgotovki nefti [Selection of demulsifiers taking into account the temperature regime of oil preparation]. Neftyanoye khozyaystvo, № 9, pp. 25–27. (in Russian).
12. Tarantsev, K. V., Korosteleva, A. V. (2013). Toplivnyye vodoneftyanyye emul’sii kak sposob utilizatsii neftesoderzhashchikh vod [Fuel oil-water emulsions as a way of utilization of oily waters]. Ekologiya i promyshlennost’ Rossii, № 2, pp. 14–17. (in Russian).
13. Fakhretdinov, R. R. (2003). Sovershenstvovaniye tekhnologii predvaritel’nogo obezvozhivaniya nefti na promyslakh [Perfection of technology of preliminary dehydration of oil on the fields]: avtoref. dis. kand. tekhn. nauk. Ufa, 21 p. (in Russian).
14. Shavrin, A. M. (2013). K voprosu intensifikatsii predvaritel’nogo obezvozhivaniya nefti na udalennykh neobustroyennykh skvazhinakh [To the issue of intensifying preliminary dehydration of oil in remote, unconfined wells]. Problemy sbora, podgotovki i transporta nefti i nefteproduktov, № 4 (94), pp. 72–76. (in Russian).
15. Shuncun, S., Tongqing, Z., Jianxian, Z. (2003). Sewage treatment from petrochemical manufacture. Gongyeshui chuli = Ind. Water Treat, № 23, pр. 23–25.

Nazarenko M. Yu., Kondrasheva N. K., Saltykova S. N.THE CHARACTERISTIC OF WASTE OF OIL SHALE PROCESSING FOR USE AS FILTERING MATERIALS
DOI: 10.23968/2305–3488.2018.23.1.9–16

This work is devoted to study of the physico-chemical properties (abrasion, crindabitity, heterogeneity, etc.) wastes of oil shale processing shale fines and shale ash and a detailed analysis of their chemical and mineral compositions to determine the possibility of using this material as a filter material for water purification from organic pollutants. Determined that shale fines and shale ash meet the requirements of GOST R 51641–200 “granular filter Material”. According to this GOST growth of solids should not exceed 20 mg/dm3 (shale fines — 4 mg/dm3, oil shale ash — 10 mg/dm3), the value of work should not exceed 4 % of shale fines by 0,3 — 0,5 %, shale ash — 0,7–0,8 %), and the value of resistance to abrasion — 0,5 % (shale fines — 0,1 %, the oil shale ash — 0,4–0,5 %. Shale ash and oil shale fines that are rich in oil or mineral oil after the sorption process, it is advisable to utilize as a fuel because they are adsorbed product will have a high calorific value.
Key words: oil shale ash, shale fines, mineral sorbents, sorbtion capacity, hoding capacity, organic pollutants, filter material.
References: 1. Vatin, N. I., Petrosov, D. V., Kalachev, A. I. (2011). Primenenie zol i zoloshlakovyh othodov v stroitel’stve. [Use of ashes and ash-and-shad wastes in construction], Inzhenernostroitel’nyj zhurnal, № 4, pp. 16–21. (in Russian).
2. Gerasimov, A. N., Syroezhko, A. M., Dronov, S. V. (2012). Vliyanie mineralnoj chasti goryuchego slanca na process ego sovmestnoj termoximicheskoj pererabotki s gudronom [The influence of the mineral part of oil shale on the process of joint thermochemical processing of tar], Koks i himiya, № 4, pp. 37–47. (in Russian).
3. Isaeva, I. E., Kaminsky, Yu. D. (2011). Kyzylskij zolootval kak istochnik neblagoprijatnogo vozdejstvija na okruzhajushhuju sredu. [Kyzylskij ash-dump as a source of adverse effects on the environment]. Sibirskij jekonomicheskij zhurnal, № 6, pp. 885–892. (in Russian).
4. Klimov, E. S. (ed.) (2011). Prirodnye sorbenty i kompleksony v ochistke stochnyx vod [Natural sorbents and chelating agents in wastewater treatment]. Ulyanovsk: UlGTu, 201 p. (in Russian).
5. Minakov, V. V., Krivenko, S. M., Nikitina, T. O. (2002). Novye texnologii ochistki ot neftyanyx zagryaznenij [New technology for cleaning of oil pollution]. Ekologiya i promyshlennost Rossii, № 5, pp. 45–49. (in Russian)
6. Nazarenko, M. Yu., Bazhin, V. Yu., Saltykova, S. N. (2014). Izmenenie sostava i svojstv goryuchix slancev vo vremya termicheskoj obrabotki [Change of composition and properties of oil shale during thermal processing]. Koks i himiya, № 10, pp. 46–49. (in Russian).
7. Nazarenko, M. Yu., Kondrasheva, N. K., Saltykova, S. N. (2015). Issledovaniya produktov piroliza goryuchix slancev [Studies of the pyrolysis products of oil shale]. Koks i himiya, № 4, pp. 38–42. (in Russian).
8. Nazarenko, M. Yu., Kondrasheva, N. K., Saltykova, S. N. (2016). Effektivnost primeneniya goryuchix slancev i slancezolnyx otxodov dlya ochistki vody ot organicheskix zagryaznitelej [The efficacy of oil shale and lantsetolistnyj waste for water purification from organic pollutants]. Izvestiya Tomskogo politexnicheskogo universiteta. Inzhiniring georesursov, vol. 9 (327), pp. 95–103. (in Russian).
9. Rudina, M. G. (ed.). (1988). Spravochnik slancepererabotchika [Directory of senseperception]. Leningrad: Ximiya, 256 p. (in Russian)
10. Smirnova, T. S., Vaxidova, L. M., Mirabidinov, Sh. N. U. (2013). Mineralno-syrevye resursy rossii i mirovoj opyt prirodopolzovaniya [Mineral resources of Russia and the world experience of nature]. Vestnik Permskogo nacionalnogo issledovatelskogo politexnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, № 7, pp. 7–17. (in Russian).
11. Strizhakova, Yu. A, Usova, T. V., Tretyakov, V. F. (2006). Goryuchie slancy — potencialnyj istochnik syrya dlya toplivnoenergeticheskoj i ximicheskoj promyshlennosti [Oil shale is a potential source of raw material for energy and chemical industry]. Vestnik MITXT. Himiya i texnologiya organicheskih veshestv, № 4, pp. 76–85. (in Russian).
12. Shashkova, I. L., Ratko, A. I., Milvit, N. V. (2000). Izvlechenie ionov tyazhelyx metallov iz vodnyx rastvorov s ispolzovaniem prirodnyx karbonatsoderzhashhix terpelov [Extraction of heavy metal ions from aqueous solutions using natural carbonate-bearing thebelow]. Zhurnal prikladnoj himii, № 6 (73), pp. 914–919. (in Russian).
13. Yudovich, Ya. E. (2013). Goryuchie slancy respubliki Komi. Problemy osvoeniya [Shale oil of the Republic of Komi. Problems of reclamation]. Syktyvkar: Geoprint, 90 p. (in Russian).
14. Leimbi-Merike, R., Tiina, H., Eneli. L. (2014). Composition and properties of oil shale ash concrete. Oil shale, № 2 (34), рр. 147–160.
15. Liu, H. (2011). Pyrolysis of oil shale mixed with lowdensity polyethylene. Oil shale, № 1 (28), pp. 42–48.
16. Raado, L-M., Rein, K., Hain, T. (2014). Oil shale ash based stone formation – hydration, hardening dynamics and phase transformations. Oil shale, № 1 (34), pp. 91–101.
17. Xie, Y., Xue, H., Wang, H. (2011). Kinetics of isothermal and non-isothermal pyrolysis of oil shale. Oil shale, № 3(28), pp. 415–424.

Protasovsky E. M., Bubyrev D. I.WATER PURIFICATION PLANTOF UNDERGROUND WATER URBAN DISTRICT OF ARMYANSK REPUBLIC OF CRIMEA
DOI: 10.23968/2305–3488.2018.23.1.17–21

The town of Armyansk, located on the Crimean peninsula, can receive water only from artesian wells. Underground waters of the Republic of Crimea have high rigidity and mineralization, and can not be used for domestic purposes without deep processing. The work is devoted to the development of the underground water cleaning station of the city of Armyansk, the technological scheme consists of filtration, desalination by reverse osmosis and conditioning, by mixing desalted and filtered water. Concentrate from reverse osmosis plants is discharged into the Black Sea via a deep-water outlet.
Key words: treatment facilities, groundwater, reverse osmosis, desalination.
References: 1. (2017). Federal’nyj zakon № 52-FZ «O sanitarnoehpidemiologicheskom blagopoluchii naseleniya» [On the sanitary-epidemiological welfare of the population] (red. ot 29.07.2017) (s izm. i dop., vstup. v silu s 30.09.2017).
2. (2017). Federal’nyj zakon ot 07.12.2011 № 416-FZ «O vodosnabzhenii i vodootvedenii» [On water supply and sanitation]. (red. ot 29.07.2017).
3. Glavnyj gosudarstvennyj sanitarnyj vrach Rossijskoj Federacii (2001). SanPiN 2.1.4.1074-01. Pit’evaya voda. Gigienicheskie trebovaniya k kachestvu vody centralizovannyh sistem pit’evogo vodosnabzheniya. Kontrol’ kachestva [Drinking water. Hygienic requirements for water quality of centralized drinking water supply systems. Quality control].
4. Ministerstvo regional’nogo razvitiya Rossijskoj Federacii (2012). Svod pravil SP 31.13330.2012 Vodosnabzhenie. Naruzhnye seti i sooruzheniya [Code of Regulations SP 31.13330.2012 Water supply. External networks and facilities]. M., 2012.
5. Vsevolozhskij, V. A. (2007). Osnovy gidrogeologii [Basic concepts of Hydrogeology]. M.: Izd-vo MGU, 448 p.
6. Ripskij, E. V. (ed.) (1971). Gidrogeologiya SSSR, t. VIII, Krym [Hydrogeology of the USSR, Vol. VIII, Crimea]. M., Nedra, 364 p.
7. Tarasenko, V. S. (ed.) (2003). Ustojchivyj Krym. Vodnye resursy [Stable Crimea. Water resources]. Simferopol’: Tavriya, 413 p.
8. Tuabe, P. R., Baranova, A. G. (1983). Himiya i mikrobilogiya vody [Water Chemistry and Microbiology]. M.: Vysshaya shkola, 280 p.
9. Kul’skij, L. A., Strokach, P. P. (1986). Tekhnologiya ochistki prirodnyh vod [Technology of natural water purification]. Kiev: Vishcha shkola, 240 p.
10. Kul’skij, L. A., Goronovskij, I. T., Koganovskij, A. M. (1980). Spravochnik po svojstvam, metodam analiza i ochistke vody [Handbook of properties, methods of analysis and water purification]. Kiev: Naukova dumka, 1206 p.
11. Krylov, A. S., Lavygin, V. M., Ochkov, V. F. (2006). Vodopodgotovka v ehnergetike [Water treatment in power industry]. M.: Izdatel’skij dom MEHI, 309 p.
12. Guzhulev, E. P., Gricenko, V. I., Taran, M. A. (2005). Vodopodgotovka i vodno-himicheskie rezhimy v ehnergetikе [Water treatment and water-chemical regimes in power industry]. Omsk: Izd-vo OmGTU, 384 p.
13. Mudler, M. (1999). Vvedenie v membrannuyu tekhnologiyu [Basic principles of membrane technology]. M.: Mir, 513 p.
14. Duhin, S. S., Sidorova, M. P., Yaroshchuk, A. E. (1991). Elektrohimiya membran i obratnyj osmos [Electrochemistry of membranes and reverse osmosis]. L.: Himiya, 192 p.
15. Dytnerskij, Yu. I. (1986). Baromembrannye processy. Teoriya i raschet [Baromembrane processes. Theory and calculations]. M.: Himiya, 272 p.

Rukobratsky N. I., Malygin K. A.MINERALIZATION OF DISTILLATE BY FILTRATION THROUGH GRANULATED NATURAL MINERALS
DOI: 10.23968/2305–3488.2018.23.1.22–30

The article presents data on the mineralization of distillate filtration through granular natural minerals: marble, dolomite, gypsum, dolomite mixture and gypsum, the effect of filtration rate, temperature and carbon dioxide content on the enrichment of distillate ions Ca2+, Mg2+. Filtration of distillate without preliminary introduction of CO2 through marble, dolomite loading provides its saturation with hardness salts up to 0,2–0,3 mg-eq./l. The best results in mineralization of the distillate to the requirements for drinking, obtained by filtration through loading of a mixture of dolomite and gypsum, the fractional composition of the grains of dolomite 1–3 mm, plaster 60–70 mm. On the basis of the research developed and tested a prototype of the filter-mineralizer with the capacity of 1 m3/h, ensuring the saturation of the distillate with ions Ca2+, Mg2+ to the requirements of GOST 2.1.4.1074–01 “Drinking Water...”. Filter mineralizer is designed for use on oil and gas drilling platforms, as well as other autonomous objects.
Key words: mineralization, distillate, dolomite, gypsum, autonomous object, drinking water.
References: 1. Azarov, I. I., Batukov, S. S., Zholus, B. I. (2016). Pit’evaya voda mor’yakov. Istoriya I sovremennost. [Drinking water for seafarers. History and modernity]. Morskaya medicina, vol. 2, № 3, pp. 25–29. (in Russian).
2. Veselov, S. Yu., Lavrov, I. S., Rukopashki, N. I. (1985). Vodoochistnye oborudovaniya: konstruirovanie i ispol’zovanie. [Water treatment equipment: design and use]. Leningrad: Mashinostroenie, 232 p. (in Russian).
3. Gosudarstvennyj standart Rossijskoj federacii (1998). «Voda pit’evaya» GOST PSI 232–98 [«Drinking water» GOST PSI 232-98]. (in Russian).
4. Glavnyj gosudarstvennyj sanitarnyj vrach RF (2001). Sanitarno-ehpidemologicheskie pravila i normativy. SanPin 2.1.4.1074–01 «Pit’evaya voda. Gigienicheskie trebovaniya k kachestvu centralizovannyh sistem pit’evogo vodosnabzheniya. Kontrol’ kachestva» [Sanitary and epidemiological rules and regulations. SanPin 2.1.4.1074-01 «Drinking water. Hygienic requirements to the quality of centralized drinking water supply systems. Quality control»]. (in Russian).
5. Glavnyj gosudarstvennyj sanitarnyj vrach RF (2002). Postanovlenie ot 19 marta № 12. O vvedenii v dejstvie sanitarnoehpidemiologicheskih pravil i normativov «Pit’evaya voda. Gigienicheskie trebovaniya k kachestvu vody rasfasovannoj v emkost’. Kontrol’ kachestva», SanPin 2.1.4.1116–02 [Decision of March 19 No. 12. On the implementation of the sanitary and epidemiological rules and standards «Drinking water. Hygienic requirements for the quality of water put in a container. Quality control», SanPin 2.1.4.1116-02]. (in Russian).
6. Erokhin, M. A., Kakurin, N. P. Desyatov, A. V. (2008). Mineralizaciya opresnennoj vody s primeneniem materialov, soderzhashchih SaSO3 [Mineralization of desalinated water with the use of materials containing] CaCO3 . Himicheskaya promyshlennost’ segodnya, № 4, pp. 17–22. (in Russian).
7. Zholus, B. I. (1979). Fiziologo-gigienicheskie obosnovaniya rekomendacij po kondicionirovaniyu pit’evoj vody na korablyah VMF [Physiological and hygienic justification of recommendations for drinking water conditioning on ships of the Navy]. St. Petersburg: S. M. Kirov Military Medical Academy, 184 p. (in Russian).
8. Kulsky, L. A. (1980). Teoreticheskie osnovy i tekhnologiya kondicionirovaniya vody [Theoretical basis and technology of water conditioning]. Kiev: Naukova Dumka, p. 564. (in Russian).
9. Lomov, O. P. (1993). Sudovaya gigiena [Ship hygiene]. Leningrad: Medicina, 175 p. (in Russian).
10. Malygin, K. A., Rukopashki N. I. (2003). Razrabotka malogabaritnogo oborudovaniya dlya mineralizacii, dezodoracii i obezzarazhivaniya pit’evoj vody. In: Gigienicheskie problemy vodoobespecheniya naseleniya i vojsk [Development of small equipment for mineralization, deodorization and disinfection of drinking water. In: Hygienic problems of water supply of the population and troops], St. Petersburg: Voenno-medicinskaya akademiya imeni S. M. Kirova, pp. 89–90. (in Russian).
11. Rakhmanin, Yu. A., Melnikov, A. I. (1980). Sanitarnomikrobiologicheskaya ocenka distillyacionnogo metoda opresneniya vody [Sanitary and microbiological evaluation of the distillation method of water desalination]. Gigiena i sanitariya, № 1, p. 12. (in Russian).
12. Rakhmanin, Yu. A. Vakhnin. G. N, Masin, V. I. (1989). Sanitarno-tekhnologicheskie osnovy korrekcii sostava opresnennoj vody gashenoj izvest’yu [Sanitary and technological bases of correction of the composition of desalinated water with slaked lime]. M.: Gigiena i sanitariya, № 6, pp. 66–69. (in Russian).
13. Rakhmanin, Yu. A., Filippova, A.V., Mikhailova, R. N. (1990). Gigienicheskaya ocenka mineralizuyushchih materialov izvestnyakov dlya korrekcii solevogo sostava malomineralizovannoj vody [Hygienic assessment of mineralizing materials of limestone for the correction of the salt composition of low-mineralized water]. Gigiena i sanitariya, № 8, pp. 4–8. (in Russian).
14. Rakhmanin, Yu. A., Mikhailova R. N. (1991). Gigienicheskaya ocenka sposobov kondicionirovaniya vody na morskih sudah [Hygienic assessment of methods of water conditioning on ships]. Gigiena i sanitariya, № 1, pp. 17–19. (in Russian).
15. Rakhmanin, Yu. A., Krasovsky, T. N., Egorova N. A. (2016) Gigienicheskie normativy kachestva i bezopasnosti vody. V Zdorov’e zdorovogo cheloveka. Nauchnye osnovy organizacii zdravoohraneniya, vosstanovitel’noj i ehkologicheskoj mediciny. Rukovodstvo [Hygienic standards of water quality and safety. The Health of a healthy person. Scientific bases of the organization of health care, restorative and ecological medicine. Guide]. M.: Izdatel’stvo ANO «Mezhdunarodnyj Universitet Vosstanovitel’noj mediciny», pp. 302–309. (in Russian).
16. Sergeev, E. P. (ed.) (1974). Rukovodstvo po gigiene vodnogo transporta [The management of hygiene of water transport]. M.: Medicina, pp. 163–165. (in Russian).
17. Chizhov, S. V., Sinyak, Y. E. (1973) Vodosnabzhenie ehkipazhej kosmicheskih korablej [The water supply of the spacecraft]. M.: Nauka, pp. 150–158. (in Russian).
18. Elpiner, L. I. (1975). Vodosnabzhenie morskih sudov [Water supply of sea vessels]. M.: Transport, 200 p. (in Russian).

Stolbikhin Iu. V., Fedorov S. V., Kudryavtsev A. V.RECONSTRUCTION OF THE SEWAGE TREATMENT PLANT USING “GEO-CONTAINERS”
DOI: 10.23968/2305–3488.2018.23.1.31–38

The complex task of removing high concentrations of contaminants in ground water originating from infiltration of runoff into surface water drains of a territory that used to be industrial in the past is solved in the paper. This problem is actual as it leads to violation of rules of reception of sewage in the municipal sewerage and involves payment of large penalties by the owner of the territory. This problem was solved by employees of the Department of water use and ecology of SPSUACE at one of office complexes in St. Petersburg. Purpose: bringing the concentrations of pollutants in the surface water drain systems to the regulatory requirements of municipal sewerage system, provided that lower capital and operating costs for water treatment are ensured as compared to the plug and play sewage treatment solutions that are widely presented on the market. Results: The technological scheme of wastewater treatment using sorption filters placed in special “geo-containers” (large volume geotextile bag) that enable fast replacement of regeneration of the sorbent is developed. The technological scheme is implemented. Adjustment works are carried out. Recommendations on effective work of treatment facilities are offered, based on the researches of quality of the treated water Practical relevance: technological and constructive solutions of treatment facilities and operation recommendations presented in the article can be used at similar industrial sites in Russia. The arrangement of the sorption filter placed in soft “geo-container” sufficiently simplifies the operating process of a local surface water treatment plant.
Key words: surface water treatment, geo-container, geotextile bag, sorbent.
References: 1. Feofanov, Yu. A., Kudryavcev, A. V., Fedorov, S. V. (2017). Reshenie zadachi nenormativnogo sbrosa stochnykh vod s byvshey promyshlennoy ploshadki [Solution of the problem of non-normative discharge of wastewaters from a former industrial area]. Bulletin of Civil Engineers, № 116, pp. 116–122 (in Russian)
2. Feofanov, Yu. A., Mishukov, B. G. (2017). Osobennosti formirovania sostava poverkhnosntnykh stochnykh vod i vybora objectov dlya ikh ochistki [Features of formation of surface sewage composition and selection of facilities for their purification]. Water and Ecology, № 4, pp. 13–25 (in Russian)
3. Ministerstvo regional’nogo razvitiya Rossijskoj Federacii (2012). SP 32.13330.2012. Svod pravil. Kanalizaciya. Naruzhnye seti i sooruzheniya. [Wastewater. Pipelines and wastewater treatment plants]. (in Russian).
4. Charters, F., Cochrane, T., O’Sullivan, A. (2016). Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate. Science of The Total Environment, vol. 550, pp. 265–272.
5. Bonneau, J., Fletcher, T., Costelloe, J. (2017). Stormwater infiltration and the urban karst. Journal of hydrology, vol. 552, pp. 141–150.
6. Langeveld, J., Liefting, H., Boogaard, F. (2012). Uncertainties of stormwater characteristics and removal rates of stormwater treatment facilities: Implications for stormwater handling, Water Research, vol. 46, issue 20, pp. 6868–6880.
7. Kim, A. N., Zaharevich, M. B., Romanova, Yu. V. (2014). Aktual’nye problemy poverhnostnogo stoka s territorii gorodov i prakticheskie puti ih resheniya [Actual problems of surface runoff from municipal territories and its practical solutions]. Bulletin of Civil Engineers, № 1 (42), pp. 87–94. (in Russian)
8. Langeveld, J. (2015). Comment on «Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems». Water research, № 84, pp. 375–377.
9. (2018) Geotuba (geokontejner) — MIATUBA [Geotube (Geo-container) – MIATUBA]. Available at: http://miakom.ru/production/geotuby/geotuba-geokonteyner-miatuba. (in Russian)
10. Merkulova, T. N., Kravchenko, T. S. (2012). Problemy ochistki vodnyh ob`ektov ot tekhnogennyh zagryaznenij [Problems of treatment of water bodies from pollution technogenic]. University news. North-Caucasian region. Technical sciences series, South Federal University, № 3, pp. 74–78. (in Russian)
11. Rublevskaya, O. N., Pankova, G. A., Leonov, L. V. (2016). Aprobaciya iskusstvennogo alyumosilikatnogo sorbenta «GLINT» dlya doochistki biologicheski ochishchennyh kommunal’nyh stochnyh vod [Approbation of Glint artificial aluminosilicate sorbent for tertiary treatment of biologically treated domestic wastewater]. Water supply and sanitary, № 5, pp. 30–37. (in Russian)
12. Komitet po ehnergetike i inzhenernomu obespecheniyu Pravitel’stva Sankt-Peterburga (2012). Rasporyazhenie ot 06.09.2016 № 163 «O vnesenii izmenenij v rasporyazhenie Komiteta po ehnergetike i inzhenernomu obespecheniyu ot 08.11.2012 № 148» [About modification of the order of Committee on energy and engineering № 148] (in Russian).
13. Instrukciya po primeneniyu Adsorbenta Glint [Sorbent Glint application instruction]. Available at: http://kvantmineral. com/filtruyushhij-material/instrukciya-adsorbent. (in Russian)

ECOLOGY

Komina G. P.ENVIRONMENTAL CHARACTERISTICS OF COMBUSTION OF GASES IN A CLOSED RING FLAME
DOI: 10.23968/2305–3488.2018.23.1.39–47

Introduction: The article presents the results of a study of vortextype gas-burning devices, without any reconstructions that allow burning both natural gases and biogas. The ecological characteristics of such burners have not been sufficiently studied, and therefore the results of the study of the amount of harmful impurities in the combustion products of gases burned in the vortex flow are of interest. The purpose of the study is to reveal the geometrical dimensions of the burner and the combustion chamber to create vortex flows ensuring flame stabilization during the combustion of natural gas and biogas. The authors determine the twist intensity for the investigated vortex burners with internal flame stabilization, depending on the geometric characteristics of the gas burners and carry out a study of the completeness of combustion of gases with a minimum amount of nitrogen oxides and benz (a) pyrene produced in combustion products. Results: Comparative analyzes of harmful components in combustion products of traditional and ring torches have shown that the ecological characteristic of a ring flame is much higher than that of a traditional one. The content of nitrogen oxides decreases several times, since the twist of the gas and air flows makes it possible to obtain a homogeneous mixture necessary for burning gases without chemical undersoil, with a minimum amount of benzo (a) pyrene and nitrogen oxides. Vortex combustion of gases in a ring flame allows simultaneous use of several methods of reducing harmful substances in order to reduce harmful components in combustion products. Practical significance: the optimum values of the ratio of the nozzle diameter and the chamber diameter are obtained, as well as the ratio of the inlet cross section and the cross section of the tangential vortex swirler, at which a flame is created in the form of a closed volumetric ring of the “torus” type with internal stabilization. The authors emphasize that the ring flame allows to increase the ecological efficiency of gas burners.
Key words: vortex combustion of gases, gas burner, ring flame, environmental safety.
References: 1. Tyukin, K. K. (2005). Effektivnost’ ispol’zovaniya topliva v vihrevyh besfuterovochnyh topkah [Efficiency of fuel use in whirling bezfetrovorichnyh furnaces]. SPb.: Nedra, 176 p. (in Russian)
2. Lyahovskij, D. N. (1958). Issledovanie aehrodinamiki ciklonnoj kamery [Study of the aerodynamics of a cyclone chamber]. In Voprosy aehrodinamiki i teploperedachi v kotel’notopochnyh processah. M.: Gosehnergoizdat, pp. 114–150.(in Russian).
3. Havkin, Yu. I. (1990). Metodika rascheta ehnergeticheskih topochnyh kamer [Method for calculating energy combustion chambers]. In Racional’noe ispol’zovanie gaza v ehnergeticheskih ustanovkah. L.: Nedra, pp. 91–142. (in Russian).
4. Marinenko, E. E., Komina, G. P. (1990). Ekologicheskie aspekty ispol’zovaniya biogaza v SSSR i za rubezhom [Ecological aspects of the use of biogas in the USSR and abroad]. M.: VNIIEgazprom, 45 p. (in Russian).
5. Glavnyj gosudarstvennyj sanitarnyj vrach Rossijskoj Federacii (2017). Gigienicheskie normativy GN 2.1.6.3492-17. Predel’no dopustimye koncentracii (PDK) zagryaznyayushchih veshchestv v atmosfernom vozduhe gorodskih i sel’skih poselenij [Hygienic standards of GN 2.1.6.3492-17. The maximum permissible concentration (MPC) of pollutants in the atmospheric air of urban and rural settlements]. (in Russian).
6. Verboveckij, E. H. (ed.). (2013). Metodicheskie ukazaniya po proektirovaniyu topochnyh ustrojstv ehnergeticheskih kotlov [Methodical instructions for designing furnace equipment of power boilers]. SPb: VTI-AOOT «NPO CKTI», 257 p. (in Russian).
7. Sobolev, V. M. (2012). Sovremennye tekhnologicheskie resheniya pri razrabotke topochno-gorelochnyh ustrojstv [Modern technological solutions for the development of combustion and combustion devices]. Novosti teplosnabzheniya, № 10 (146), pp. 23–29. (in Russian).
8. Marinenko, E. E., Komina, G. P. (2013). Snizhenie ehmissii parnikovyh gazov v sistemah biokonversii mnogokomponentnyh organicheskih othodov s polucheniem biogaza [Reduction of greenhouse gas emissions in bioconversion systems of multi-component organic waste with production of biogas]. In Yubilejnyj vypusk statej i publikacij k 55-letiyu kafedry Teplogazosnabzheniya i ohrany vozdushnogo bassejna. SPb : SPbGASU, pp. 99–104. (in Russian).
9. Hudokormov, N. N. (2015). Sozdanie biosferosovmestimyh ehnergoehffektivnyh tekhnologij za schet primeneniya integral’no (kompleksnogo) podhoda na ob”ektah gorodskogo hozyajstva (v kotel’nyh maloj i srednej moshchnosti) [Creation of biosphere-compatible energy-efficient technologies through the application of an integrated (integrated) approach to urban facilities (in small and medium-power boiler houses]. Kursk: Izd-vo Kurskogo instituta menedzhmenta, ehkonomiki i biznesa, 259 p. (in Russian).
10. Komina, G. P. (2005). Netradicionnye resursy gazoobraznogo topliva i ego ispol’zovanie [Unconventional resources of gaseous fuels and their use]. Vestnik grazhdanskih inzhenerov, № 3, pp. 67–72.
11. Komina, G. P. (2007). Ohrana atmosfery pri szhiganii gazoobraznogo topliva [Protection of the atmosphere by burning gaseous fuels]. Gazinform, № 9, pp. 8–14. (in Russian).
12. Komina, G. P., Yakovlev, V. A. (2016). Effektivnye tekhnologii szhiganiya nevzaimozamenyaemyh gazov Gazinform, № 4 (54), pp. 54–60. (in Russian).
13. Minzdrav Rossii (2003). GN 2.1.6.1338-03. Predel’no dopustimye koncentracii (PDK) zagryaznyayushchih veshchestv v atmosfernom vozduhe naselennyh mest [Maximum permissible concentration (MPC) of pollutants in the atmospheric air of populated areas]. (in Russian).
14. Gosudarstvennyj komitet Rossijskoj Federacii po ohrane okruzhayushchej sredy (1999). Metodika opredeleniya vybrosov zagryaznyayushchih veshchestv v atmosferu pri szhiganii topliva v kotlah proizvoditel’nost’yu menee 30 tonn para v chas ili menee 20 Gkal v chas[Methodology for determining the emission of pollutants into the atmosphere when burning fuel in boilers with a capacity of less than 30 tons of steam per hour or less than 20 Gcal per hour] № 335/33–15. (in Russian).
15. Volikov, A. N., Shavrin, V. I, Prohorov, S. G. (2012). Energoehkologicheskaya ehffektivnost’ prirodoohrannyh tekhnologij i apparatov pri szhiganii topliva (Chast’ 1) [EnergyEcological Efficiency of Environmental Technologies and Apparatuses for Combustion of Fuel (Part 1)]. SPb.: SPbGASU, 168 p. (in Russian).
16. Hudokormov, N. N, Komina, G. P, Kachanov, A. N. (2015) Szhiganiyu prirodnogo gaza — kompleksnyj podhod [An integrated approach for combustion of natural gas]. Berg kollegiya, № 3 (126), pp. 22–29. (in Russian).
17. Volikov, A. N., Novikov, O. N., Okat’ev, A. N. (2012). Energoehklogicheskaya ehffektivnost’ szhiganiya gazovogo i zhidkogo topliva v kotlah maloj i srednej moshchnosti [Energyefficient combustion efficiency of gas and liquid fuel in boilers of small and medium power]. Sovremennye problemy nauki i obrazovaniya, № 4, p. 102. (in Russian).
18. Glebov, G. A. (2012). Vihrevoe gorelochnoe ustrojstvo. Klassy MPK: F23D5/12. Detali, konstruktivnye ehlementy [Vortex burner device. Classes IPC: F23D 5/12. Parts, structural members]. Patent RF № 2443941. (in Russian).

Malinin V. N., Gordeeva S. M., Mitina Iu. V., Pavlovsky A. A.THE NEGATIVE CONSEQUENCES OF STORM SURGES AND THE “AGE-OLD” LEVEL RISE IN THE NEVA BAY
DOI: 10.23968/2305–3488.2018.23.1.48–58

Negative consequences of possible level variations in the Neva Bay by the end of the century due to the age-old level rise and extreme storm surges for St. Petersburg are discussed. These include flooding, submergence, erosion of shores and bogging of coastal areas. It is shown that the most realistic forecast of the level in Kronstadt by the end of the century is its rise up to 34–59 cm BS (the Baltic system of heights), and according to the “pessimistic” forecast there is a possibility of its rise to 80–90 cm BS. In this case, significant areas of the Admiralteysky, Vasileostrovsky, Kirovsky and Petrogradsky city districts will be flooded. The results of assessing the flood zone boundaries of the city’s territory for one-percent water levels are given. In case of extreme storm surges, the possible level rise north of Gorskaya may amount to 600 cm BS. Especially the effect of flooding caused by storm surges is pronounced near Sestroretsk. At an altitude of the 4-m surge wave the total area of possible flooding of Kurortny district exceeds 1260 hectares, all the beaches being completely lost.
Key words: sea level, Neva Bay, storm surges, forecast, underflooding and flooding of coasts.
References: 1. Gordeeva, S. M., Malinin, V. N. (2014). Izmenchivost’ morskogo urovnya Finskogo zaliva [Sea level variability of the Gulf of Finland]. Saint-Petersburg: RSHU publ., 178 p. (in Russian).
2. Zaharchuk, Е. А., Sukhachev, V. N., Tihonova, N. А. (2017). Mehanizmy opasnyh pod’emov urovnya vjhya v Finskom zalive [Mechanisms of dangerous sea level rises in the Gulf of Finland] St. Petersburg: Petersburg-XXI centure, 152 p. (in Russian).
3. Klevannyy, K. A., Averkiev, A. S. (2011). Vliyaniye raboty kompleksa zashchitnykh sooruzheniy Sankt-Peterburga ot navodneniy na podyem urovnya vody v vostochnoy chasti Finskogo zaliva [Operational effect of Saint Petersburg Flood Prevention Facility Complex on the sea level rise in the eastern part of the Gulf of Finland]. Society. Environment. Development, № 1, pp. 204–209. (in Russian).
4. Malinin, V. N. (2012). Uroven’ okeana: nastoyashcheye i budushcheye [Sea level: the present and the future]. St. Petersburg: RSHU publ., 260 p. (in Russian).
5. Malinin, V. N., Gordeeva, S. M., Mitina, Iu. V. (2016). Izmenchivost’ nevskikh navodneniy i morskogo urovnya v sovremennykh klimaticheskikh usloviyakh [Variability of the Neva floods and sea level in modern climatic conditions]. Water resources, № 5, pp. 544–557. (in Russian).
6. Malinin, V. N., Menzhulin, G. V., Pavlovsky, A. A. (2016). Gradostroitel’noye planirovaniye Sankt-Peterburga v usloviyakh sovremennykh izmeneniy klimata [Urban planning of St. Petersburg in the context of modern climate change]. Proceedings of RSHU, vol. 43, pp. 140–147. (in Russian).
7. Malinin, V. N., Mitina, Iu. V., Shevchuk, O. I. (2013). K otsenke zatopleniya poberezh’ya Kurortnogo rayona SanktPeterburga pri prokhozhdenii ekstremal’nykh navodnencheskikh tsiklonov [To the assessment of flooding of the coast of St. Petersburg Kurortny district during the passage of extreme flooding cyclones]. Proceedings of RSHU, vol. 29, pp. 138–145. (in Russian).
8. Pavlovsky, A.A. (2016). Ob opredeleniya zon zatopleniya na territorii Sankt-Peterburga [On the defining the flood zones within the territory of St. Petersburg].Proceedings of RSHU, vol. 43, pp. 39–50. (in Russian).
9. Pavlovsky, A. A., Malinina, Iu. V. (2010). Povysheniye urovnya Finskogo zaliva v XXI veke: stsenarii i posledstviya. K voprosu o zatoplenii beregovoy zony v predelakh Kurortnogo rayona Sankt-Peterburga [Sea level rise of the Gulf of Finland in the 21st century: scenarios and consequences. On the issue of flooding of the coastal zone within the Kurortny district of St. Petersburg]. Society. Environment. Development, № 4, pp. 219–226. (in Russian).
10. Pavlovsky, A. A., Mitina, Iu. V. (2012). Vozmozhnyye posledstviya povysheniya urovnya Finskogo zaliva v XXI stoletii dlya pribrezhnykh territoriy Sankt-Peterburga [Possible consequences of the sea level rise of the Gulf of Finland in the 21st century for the coastal zones of St. Petersburg]. Society. Environment. Development, № 1, pp. 221–227. (in Russian).
11. Pravitel’stvo Rossijskoj Federacii (2014). Pravila opredeleniya granic zon zatopleniya, podtopleniya [Rules for determining the boundaries of flooded areas, flooding](Utverzhdeny postanovleniem ot 18.04.2014 №360).
12. Pylyaev, M. I. (2007). Stariy Peterburg [The old Petersburg]. Saint-Petersburg: STD, 512 p. (in Russian).
13. Ryabchuk, D. V., Sergeyev, A. Iu, Kovaleva, O. A. (2016). Problemy abrazii beregov vostochnoy chasti Finskogo zaliva: sostoyaniye, prognoz, rekomendatsii po beregozashchite [Problems of shore abrasion of the eastern part of the Gulf of Finland: state, forecast, recommendations on shore protection]. Proceedings of RSHU, vol. 44, pp. 187-203. (in Russian).
14. Hurrell, J., Kushnir, Y., Ottersen, G. (2003). The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophysical Monograph Series, American Geophysical Union, vol. 134, pp. 1–36.
15. Boschung J. (ed.) (2013). IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535 p.
16. Meier, H., Broman, B., Kjellström, E. (2004). Simulated sea level in past and future climates of the Baltic Sea. Climate Research, vol. 27, pр. 59–75.
17. Morice, C., Kennedy, J., Rayner, N. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. Journal of Geophysical Research, vol. 117, pр. 58–80.
18. The BACC II Autor Team (2015). Second Assessment of Climate Change for the Baltic Sea Basin. Cham: Springer International Publishing, 501 p.

Malkova M. A., Vozhdaeva M. Yu., Kantor E. A.ASSESSMENT OF CARCINOGENIC RISK TO POPULATION HEALTH DUE TO THE QUALITY OF DRINKING WATER OF SURFACE AND INFILTRATION WATER INTAKES
DOI: 10.23968/2305–3488.2018.23.1.59–64

The article compares the quality of water with the magnitude of carcinogenic risk, which is determined by the content of known carcinogens — components of trihalomethanes, which are formed during the chlorination of water. An assessment of the carcinogenic risk to human health arising from the consumption of drinking water from surface and infiltration water intake is carried out in accordance with the guidelines (MR 2.1.4.0032–11). The average annual concentrations of trihalomethane components (TMC) and standard values of exposure factors were used as initial data. It is established that drinking water obtained on surface water intake has a greater value of the total carcinogenic risk. This is explained by the chlorine dosing technology used and the chlorine dose, which is higher than that used for infiltration water intakes (IWI1 and IWI2). Thus, the values of the total carcinogenic risk for surface water intake (SWI) are 1.18 × 10–5 ÷ 3.25 × 10–6, and for IWI1 and IWI2 9.29 × 10–6 ÷ 5.99 × 10–6 and 5.08 × 10–6 ÷ 3.30 × 10–6, respectively. For the first time it has been shown that bromodichloromethane is the largest contributor to the total values of carcinogenic risk in drinking water at infiltration water intakes, on surface water intake of SWI-bromodichloromethane and chloroform. The obtained results testify to a somewhat higher quality of drinking water of infiltration water intakes in comparison with water withdrawals of surface type for such indicator as total carcinogenic risk. On the other hand, dibromochloromethane is the most dangerous among constantly present TMC in drinking water, and its content in water infiltration water intakes is higher than in surface water.
Key words: chlorination of drinking water, trihalomethanes, carcinogenic risk, surface water intake, infiltration water intake.
References: 1. Mazaev, V. T., Korolev, A. A., SHlepnika, T. G. (2005). Kommunal’naya gigiena [Communal Hygiene]. M.: GEHOTAR-Media, 304 p. (in Russian).
2. Pivovarova, E. A. (2016). Ocenka kancerogennogo riska dlya zdorov’ya naseleniya pri vozdejstvii himicheskih veshchestv, zagryaznyayushchih pit’evuyu vodu [Assessment of the carcinogenic risk to public health when exposed to chemicals polluting drinking water] In: Innovacionnye issledovaniya: problemy vnedreniya rezul’tatov i napravleniya razvitiya. Sbornik statej Mezhdunarodnoj nauchno-prakticheskoj konferencii, pp. 125–127. (in Russian).
3. Sulejmanov, R. A., Valeev, T. K., Egorova, N. N. (2016). Ekologo-gigienicheskie riski zdorov’yu cheloveka pri upotreblenii pit’evyh vod v usloviyah promyshlennogo goroda [Ecological and hygienic risks to human health when drinking water is used in an industrial city]. Ufa: Ufimskij NII mediciny truda i ehkologii cheloveka, 19 p. (in Russian).
4. Avchinnikov, A. V. (2001). Gigienicheskaya ocenka sovremennyh sposobov obezzarazhivaniya pit’evoj vody [Hygienic assessment of modern methods of drinking water disinfection]. Gigiena i sanitariya, № 2, pp. 11–20. (in Russian).
5. Malkova, M. A., Kantor, I. V., Kantor, E. A. (2015). Ocenka zagryaznennosti trigalogenmetanami pit’evoj vody [Assessment of contamination of drinking water by trihalomethanes]. V: Fundamental’nye i prikladnye issledovaniya v tekhnicheskih naukah v usloviyah perekhoda predpriyatij na importozameshchenie: problemy i puti resheniya, UGNTU, pp. 409–411. (in Russian).
6. Kantor, E. A., Malkova, M. A., Zhigalova, A. V. (2016). Soderzhanie trigalogenmetanov v pit’evoj vode nekotoryh vodozaborov g. Ufy [The content of trihalomethanes in drinking water of some water intakes in Ufa]. Svidetel’stvo o gosudarstvennoj registracii bazy dannyh № 2016620652 ot 23.05.2016. (in Russian).
7. Malkova, M. A. (2016). Nekotorye problemy obrazovaniya trigalogenmetanov pri hlorirovanii pit’evoj vody [Some problems of the formation of trihalomethanes in the chlorination of drinking water]. Vestnik molodogo uchenogo UGNTU, № 3 (7), pp. 68–74. (in Russian).
8. Malkova, M. A., Huziahmetova, A. A. (2015). Problema obrazovaniya trigalometanov pri hlorirovanii vody [The problem of the formation of trihalomethanes in the chlorination of water]. V: Materialy IX Vserossijskoj nauchnoj internetkonferencii: Integraciya nauki i vysshego obrazovaniya v oblasti bio i organicheskoj himii i biotekhnologii, p. 113. (in Russian).
9. Malkova, M. A., Husainova, I. A., Huziahmetova, A. A. (2016). Ocenka izmeneniya kachestva pit’evoj vody po trigalogenmetanam v period 1993–2013 gg. na nekotoryh vodozaborah g. Ufy [Assessment of changes in the quality of drinking water for trihalomethane in the period 1993–2013. at some water intakes in Ufa]. In: Materialy 67-j NauchnoTekhnicheskoj konferenciya studentov, aspirantov i molodyh uchenyh UGNTU. Ufa: Izdatel’stvo UGNTU, pp. 491–492. (in Russian).
10. Malkova, M. A., Huziahmetova, A. A., Zhigalova, A. V. (2017). Sopostavlenie kachestva pit’evoj vody po soderzhaniyu trigalogenmetanov s zabolevaemost’yu naseleniya [Comparison of the quality of drinking water with respect to the content of trihalomethanes with the incidence of the population]. Sovremennye problemy nauki i obrazovaniya, № 3, p. 145. (in Russian).
11. Minzdrav Rossii (2002). SanPiN 2.1.4.1074–01. Pit’evaya voda. Gigienicheskie trebovaniya k kachestvu vody centralizovannyh sistem pit’evogo vodosnabzheniya [Drinking water. Hygienic requirements for water quality of centralized drinking water supply systems]. (in Russian).
12. Federal’nyj centr gigieny i ehpidemiologii Rospotrebnadzora (2012). Metodicheskie rekomendacii MR 2.1.4.0032–11. Integral’naya ocenka pit’evoj vody po pokazatelyam himicheskoj bezvrednosti [Methodical recommendations of MP 2.1.4.0032-11. Integral assessment of drinking water according to the indices of chemical harmlessness]. (in Russian).
13. Vozhdaeva, M. Yu., Cypysheva, L. G., Kantor, L. I. (2005). Effektivnost’ sochetaniya mass-selektivnogo i atomnoehmissionnogo detektirovaniya pri hromatograficheskom analize kachestva vody [Efficiency of a combination of massselective and atomic-emission detection in the chromatographic analysis of water quality]. Mass-spektrometriya, vol. 2, № 3, pp. 229–235. (in Russian).
14. Vozhdaeva, M. Yu., Cypysheva, L. G., Kantor, L. I. (2001). Analiz organicheskih zagryaznitelej vody metodami gazovoj hromatografii s razlichnymi vidami detektirovaniya [Analysis of organic pollutants of water by gas chromatography with various types of detection]. Analitika i kontrol’, vol. 5, № 2, pp. 171–185. (in Russian).
15. Holova, A. R., Vozhdaeva, M. Yu., Vagner, E. V. (2017). Soderzhanie organicheskih soedinenij v pit’evoj vode, transportiruemoj po raspredelitel’noj vodoprovodnoj seti g. Ufy [The content of organic compounds in drinking water, transported through a water distribution network in Ufa]. In: Aktual’nye napravleniya fundamental’nyh i prikladnyh issledovanij materialy XI mezhdunarodnoj nauchnoprakticheskoj konferencii. NIC «Akademicheskij», pp. 172–175. (in Russian).

Neverova-Dziopak E., Tsvetkova L. I.RECLAMATION METHODS FOR EUTROPHIICATED WATER BODIES
DOI: 10.23968/2305–3488.2018.23.1.65–70

The article deals with hydotechnical measures for the renewal of ecological state of eutophicated water bodies such as: the increase of flow caracity and water exchange, washing, aerating, etc. The biological methods of combating the water blooms are also discussed: the breeding of herbivorous fish, introduction of phytoplankton antagonist organisms and the use of macrophytes for nutrient accumulation.
Key words: eutrophication, biogenic substances, secondary pollution, aeration, reservoir hydrodynamics, reclamation, biological methods.
References: 1. Alekseev, M. I., Cvetkova, L. I., Neverova-Dziopak, E. V. (1999). Obespechenie ehkologicheskoj bezopasnosti vodoemov pri sbrose stochnyh vod [Ensuring the environmental safety of water bodies in wastewater discharge]. In Sb. dokl. nauch. chtenij, posvyashch. 100-letiyu so dnya rozhdeniya S. M. Shifrina. SPb.: SPbGASU, pp. 8–17.
2. Furman, E., Munsterh’elm, R., Salemaa, H. (2002). Baltijskoe more. Okruzhayushchaya sreda i ehkologiya [Baltic Sea. Environment and Ecology]. Hel’sinki: Digitone Oy, 24 s.
3. Neverova-Dziopak, E. (2007). Ekologizne aspekty ochzony wod powierzchniowych [Ecologic aspects of surface water protections]. Rzeszow: Oficyna Wydawnicza Politechniki Rzeszowskiej, 103 p. (in Polish).
4. Neverova-Dziopak, E. (2010). Podstawy zarzadzania procesem eutrofizacji antropogenicznej [Basics of managing the anthropogenic eutrophication process]. Krakow: AGH, 132 p. (in Polish).
5. (2008). Plan dejstvij Helkom po Baltijskomu moryu, Ministerskoe zasedanie Helkom, Krakov, Pol’sha, 15 noyabrya 2007 g. [Action Plan for the Baltic Sea Helcom, Ministerial Meeting Helcom, Krakow, Poland, 15 November 2007]. SPb.: Izd-vo «Dialog», 112 p. (in Russian).
6. Neverova-Dziopak, E. (2003). Teoreticheskoe, metodologicheskoe i inzhenernoe obespechenie ohrany poverhnostnyh vod ot antropogennogo ehvtrofirovaniya [Theoretical, methodological and engineering support of surface water protection from anthropogenic eutrophication]. Diss. na soisk. uch. stepeni d.t.n. SPb., 342 p. (in Russian).
7. Ministry of Foreign Affairs of Finland (1993). Advanced Environmental Technology from Finland. Helsinki: WSOY, 380 p.
8. Bierman, V. I. (1979). A Comparison of models developed for phosphorus management in the Great Lakes. In: Proceedings of the IJC/Cornell University Conference on “Phosphorus Management Strategies for the Great Lakes”, Rochester, New York, pp. 178–186.
9. Chapra, S. (1977). Total phosphorus model for the Great Lakes. Journal of the environmental engineering division, vol. 103, № EE2, pp. 147–161.
10. Moss, B. (1982). Studies on Gull Lake Michigan. II Eutrophication evidence and prognosis. Fresh-water boil, vol. 2, № 4, pp. 18–25.
11. Nezhihovskij, R. A. (1985). Voprosy formirovaniya kachestva vody reki Nevy i Nevskoj guby [The issues of formation of water quality of the Neva River and the Neva Bay]. L.: Gidrometeoizdat, 106 p. (in Russian).
12. Abrosov, V. I., Bauehr, O. N. (1955). O razvedenii belogo amura v SSSR. Voprosy ihtiologii, № 3, pp. 129–134. (in Russian)
13. Tanasijchuk, N. N. (1961). Ob akklimatizacii belogo amura v nizov’yah Volgi [Acclimatization of the white Amur in the lower reaches of the Volga]. Voprosy ihtiologii, vol. 17, pp. 176–178. (in Russian).
14. Torkanov, A. M. (2004). Akklimatizaciya ryb na kamchatke v XX veke [Acclimatization of fish on the Kamchatka Peninsula in the XX century]. In: Kamchatka: proshloe i nastoyashchee. Petropavlovsk-Kamchatskij, pp. 213–218. (in Russian).
15. Bogdanov, N. I. (2008). Biologicheskie osnovy predotvrashcheniya «cveteniya» Penzenskogo vodohranilishcha sinezelenymi vodoroslyami [Biological basis for preventing the «blooming» of the Penza reservoir with blue-green algae]. Penza: RIO PGHSA, 76 p. (in Russian).
16. Bulon, V. V. (ed.) (2008). O knige N. I. Bogdanova «Biologicheskie osnovy predotvrashcheniya «cveteniya» Penzenskogo vodohranilishcha sinezelenymi vodoroslyami [About the book of N. I, Bogdanov «Biological basis for preventing “floweringˮ of the Penza reservoir with blue-green algae»]. SPb: Lemma, 17 p. (in Russian).
17. (2014). Reshenie XI sezda GBO RAN [Decision of the XI congress of the GAO RAS]. Availble at: http:gboran.ru/wpcontent/uploads/2014/12/pdf.
18. Cvetkova, L. I. (ed.) (2012). Ekologiya [Ecology]. SPb.: Izd-vo OOO «Novyj zhurnal», 452 p. (in Russian).

Savkin V. M., Dvurechenskaya S. Ya.INFLUENCE OF LONG-TERM COMPLEX USE OF WATER RESOURCES ON THE ECOSYSTEM OF THE NOVOSIBIRSK RESERVOIR
DOI: 10.23968/2305–3488.2018.23.1.71–82

Introduction: a multiple-use water management complex is currently functioning in the Upper Ob River basin. Drinking, industrial, agricultural water supply and energetic are the main participants in it. The long-term use of water resources of the Novosibirsk reservoir along with positive aspects had a number of negative consequences for the existing water ecosystems, while the ecosystem of the reservoir itself was affected by anthropogenic pressure, which could not been reflected on its functioning. Purpose of the study: analysis of the long-year water management situation in the Upper Ob basin to develop recommendations for the management and rational use of water resources in the reservoir. Results: the main characteristics, purpose of construction and use of water resources of the Novosibirsk reservoir — the only artificial reservoir in the Ob River basin — are discussed. As a result of the analysis and generalization of long-term investigation the features of the hydrological and hydrochemical regimes of this large reservoir, considered as a source of water supply and drinking water of normative quality, are described. The socio-economic role of the reservoir in the development of the region’s economy is shown. Its “pain points” associated with a small useful volume and the need to transform flood waves and rain floods to exclude processes of flooding the territory of the city of Novosibirsk are noted. An intensified anthropogenic press on the water resources of the reservoir, including the development of negative processes: the ongoing processing of shores, increasing the concentrations of some chemicals in water and the recession of water levels below the dam of the hydroelectric power station has been identified. The positive role of the reservoir in ensuring the navigable situation on the area of the Ob River from Novosibirsk to the mouth of the Tom River is indicated. The limiting factors for water management in low-water years and seasons, due to the low flow of the river are established. Practical relevance: recommendations for improving the water-ecological and water management situation on the Upper Ob are given.
Key words: reservoir, water use, priority water supply, water level, run-off control.
References: 1. Savkin, V. M. (2000). Ekologo-geograficheskiye izmeneniya v basseynakh rek Zapadnoy Sibiri. [Ecological and geographical changes in river basins of Western Siberia]. Novosibirsk: Science, 152 pp. (in Russian).
2. Savkin, V. M., Dvurechenskaya, S. Ya. (2009). Vodosnabzheniye kak osnovnoy komponent vodokhozyaystvennogo kompleksa Novosibirskogo vodokhranilishcha. In: Trudy mezhdunarodnoy nauchnoprakticheskoy konferentsii “Sovremennyye problemy vodokhranilishch i ikh vodosborov” [Water supply as the main component of the water management complex of the Novosibirsk reservoir]. Perm: Perm State University, pp. 162–167 (in Russian).
3. Savkin, V. M., Dvurechenskaya, S. Ya. (2009). Osobennosti gidrologicheskikh usloviy i problemy vodopolzovaniya Novosibirskogo vodokhranilishcha. In: Voprosy gidrologii i gidroekologii Urala [Features of hydrological conditions and problems of water use of the Novosibirsk reservoir]. Perm: Perm State University, pp. 8–14 (in Russian).
4. Vasilev, O. F., Burakov, D. A., Vostryakova, N. V., Savkin, V. M. (1990). Perspektivy regulirovaniya stoka v ObIrtyishskom basseyne v svyazi s meliorativnyim osvoeniem territorii. Gidrologicheskoe obosnovanie vodohozyaystvennyih meropriyatiy. In: Trudy V Vsesoyuznogo gidrologicheskogo s’ezda [Prospects for flow regulating in the Ob-Irtysh basin in connection with land reclamation. Hydrological justification of water management measures]. L.: Gidrometeoizdat, pp. 159–164.
5. Savkin, V. M., Dvurechenskaya, S. Ya. (2016). Novosibirskoye vodokhranilishche kak istochnik vodosnabzheniya». In: «Chelovek i voda. istoriya». Materialy Mezhdunarodnoy nauchnoy konferentsii. [Novosibirsk Reservoir as a source of water supply]. Siberian State University of Water Transport. Ministry of Transport of the Russian Federation, pp. 18–26 (in Russian).
6. Savkin, V. M., Dvurechenskaya, S. Ya. (2011). Ekologovodohozyaystvennyie osobennosti mnogoletnego ispolzovaniya vodnyih resursov Novosibirskogo vodohranilischa. In: Sb. Vserossiyskoy nauchnoy konferentsii “Ustoychivost vodnyih ob’ektov, vodosbornyih i pribrezhnyih territoriy; riski ih ispolzovaniya” [Ecological and water management features of long-term use of water resources of the Novosibirsk reservoir]. Kaliningrad: Kapros (Izd-vo TERRA BALTIKA) pp. 354–360 (in Russian).
7. Savkin, V. M., Dvurechenskaya, S. Ya. (2014). Resourcesrelated and Water-Environmental Problems of the Complex use of the Novosibirsk Reservoir, Water Resources, vol. 41, № 4, pp. 446–453 (in Russian).
8. Savkin, V. M., Kondakova, O. V. (2011). Vliyanie osobennostey gidrologicheskogo rezhima Novosibirskogo vodohranilischa na razvitie beregovyih protsessov. In: Trudy 2 Mezhdunarodnoy konferentsii «Sozdanie i ispolzovanie iskusstvennyih zemelnyih uchastkov na beregah i akvatorii vodoemov» [Influence of the features of the hydrological regime of the Novosibirsk Reservoir on the development of coastal processes]. Novosibirsk: SO RAN, pp. 293–297 (in Russian).
9. Khabidov, A. Sh., Leontev, I. O., Marusin, K. V., Shlychkov, V. A., Savkin, V. M., Kuskovskiy, V. S. (2009). Upravlenie sostoyaniem beregov vodohranilisch [Management of the state of the banks of reservoir]. Novosibirsk: SO RAN, 239 pp. (in Russian).
10. Vasiliev, O. F., Savkin, V. M., Dvurechenskaya, S. Ya., Popov, P. A. (1997). Vodohozyajstvennye i ehkologicheskie problemy Novosibirskogo vodohranilishcha, Vodnye resursy [Water and ecological problems of the Novosibirsk reservoir], Water resources, vol. 24, № 5, pp. 581–589 (in Russian).
11. Savkin, V. M., Dvurechenskaya, S. Ya., Orlova, G. A., Bulycheva, T. M. (2003). Formirovaniye gidrologogidrokhimicheskogo rezhima Verkhney Obi na uchastke Novosibirskogo vodokhranilishcha v usloviyakh izmeneniya prirodno-tekhnogennoy situatsii, [Formation of the hydrologicalhydrochemical regime of the Upper Ob River in the area of the Novosibirsk Reservoir in conditions of changing the natural and man-made situation], Sibirskiy ekologicheskiy zhurnal, vol. 10, №2, pp. 171–179 (in Russian).
12. Alekin, O. A. (1970). Osnovy gidroximii [Fundamentals of Hydrochemistry], Leningrad: Gidrometeoizdat, 442 pp. (in Russian).
13. da Rocha, M., Dourado, P., de Souza Rodrigues, M.(2015). The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil), Environmental Monitoring and Assessment, vol. 7, 441–453 pp.
14. Calijuri, M., Castro, J., Costa, L. (2015). Impact of land use/land cover changes on water quality and hydrological behavior of an agricultural subwatershed, Environmental Earth Sciences, vol. 9, 74–80 pp.
15. Setegn, S. (2015). Water Resources Management for Sustainable Environmental Public Health. Sustainability of Integrated Water Resources Management: Water Governance, Climate and Ecohydrology. Сh. 15, Springer International Publishing, pp. 275–287
16. Rozenberg, G. S., Evlanov, I. A., Seleznyov, V. A. (2011). Opyt ekologicheskogo normirovaniya antropogennogo vozdejstviya na kachestvo vody (na primere vodoxranilishh Srednej i nizhnej Volgi) [Experience in the Environmental Rationing of Anthropogenic Impact on Water Quality (on the example of the reservoirs of the Middle and Lower Volga)], In Voprosy ekologicheskogo normirovaniya i razrabotka sistemy ocenki sostoyaniya vodoemov. Tovarishhestvo nauchnyx izdanij. Kmk. M., p. 196 (in Russian).
17. Dvurechenskaya, S. Ya. (2012). Analysis of consequences of contribution from major sources of chemical matter in water of Novosibirsk reservoir. Contemporary problems of ecology, vol. 5, issue: 4, pp. 347–351 (in Russian).
18. Ermolaeva, N. I., Dvurechenskaya, S. Ya. (2014). Vliyanie povyishennoy antropogennoy nagruzki na strukturnyie izmeneniya soobschestv zooplanktona Novosibirskogo vodohranilischa. In: Sb. V Vserossiyskoy konferentsii po vodnoy ekotoksikologii «Antropogennoe vliyanie na vodnyie ekosistemyi» [The effect of increased anthropogenic pressure on structural changes in the zooplankton communities of the Novosibirsk reservoir]. Yaroslavl: Filigran, vol. 1, pp. 66–70 (in Russian).

Tsvetkova L. I., Ivanenkо I. I., Novikova A. M.Cr(6+) RECOVERY BY РSEUDOMONAS MENDOSCINA CULTURE IN LABORATORY BIOREACTOR
DOI: 10.23968/2305–3488.2018.23.1.83–90

The researches executed under the grant of SPSUACE present that a biochemical process of Cr(6+) recovery in a biomembrane reactor with immobilized bacterial cells is significantly more efficient in comparison to using the free-floating microorganisms. The possibility of chrome-reduction using the immobilized bacterial cells in biocatalytic membranes is proved. It is discovered that the efficient Cr (6+) recovery comes at the equal rates of diffusion and biochemical process. It is found that Cr(6+) reduction in the membrane bioreactor may be achieved at the portion injection of Cr(6+) but the compound concentration should not exceed 20 mg/dm3. Р. mendocina Р–13 immobilized bacteria reduces Cr (6+) content from 20 up to 0 mg/dm3 at its five-time introduction with a linear velocity after which the reaction ceases due to the cell metabolite formation. The treatment process continuation is only possible after the cultural medium replacement with fresh solution. The biochemical process can be controlled by ORP monitoring. It is found that using the Р. mendocina cells immobilized on membranes, the chromate-reduction process is efficient at the ORP values below 400 MV, that is, within the range of aerobic process course. Thus, Cr (6+) can be recovered by the agents of different genera and types of both optionally and obligatory anaerobic bacteria as well as the aerobes capable of anaerobic respiration. Moreover, some of them can be successfully used for the contaminated water treatment from this toxic compound.
Key words: biochemical process, membranes, immobilized microorganisms, chromate-reduction, oxidation reduction potential
References: 1. Eliseeva, G. S., Klyushnikova, T. M., Kasatkina, T. P., Serpokrylov, N. S. (1991). Vosstanovlenie tyazhelyh metallov mikroorganizmami v sredah s nepishchevym i pishchevym rastitel’nym syr’em [Recovery of heavy metals by microorganisms in environments with non-food and food plant raw materials]. Himiya i tekhnologiya vody, vol. 13, pp. 72–76. (in Russian).
2. Dmitrenko, G. N., Ovcharov, L. F. (1997). Ispol’zovanie biotekhnologii ochistki stochnyh vod ot ionov tyazhelyh metallov [The use of biotechnology for wastewater treatment from heavy metal ions]. Himiya i tekhnologiya vody, vol. 19, № 5, pp. 544–548. (in Russian).
3. Romanenko, V. I., Koren’kov, V. N. (1977). Chistaya kul’tura bakterij, ispol’zuyushchih hromaty i bihromaty v kachestve akceptora vodoroda pri razvitii v anaehrobnyh usloviyah [A pure culture of bacteria using chromates and bichromates as a hydrogen acceptor under development under anaerobic conditions.]. Mikrobiologiya, vol. 46, № 3, pp. 414–417. (in Russian).
4. Gvozdyak, P. I., Mogilevich, N. F., Ryl’s’kij, A. F., Grishchenko, N. I. (1985). Vosstanovlenie shestivalentnogo hroma kollekcionnymi shtammami bakterij [Recovery of hexavalent chromium by bacterial strains of bacteria]. Mikrobiologiya, vol. 55, № 5, pp. 962–965. (in Russian).
5. Kvasnikov, E. I., Klyushnikova, T. M., Kasatkina, T. P. (1988). Bakterii, vosstanavlivayushchie tyazhelye metally v prirode [Bacteria that restore heavy metals in nature], Mikrobiologiya, vol. 57, № 4, pp. 680–685. (in Russian).
6. Kvasnikov, E. I., Klyushnikova, T. M., Kasatkina, T. P. (1988). Rezistentnost’ bakterij k soedineniyam tyazhelyh metallov [Resistance of bacteria to heavy metal compounds], Mikrobiologicheskij zhurnal, t. 50, № 6, pp. 24–27. (in Russian).
7. Fujie, K., Hong-Ying, H., Xia, H., Tanaka, Y., Urario, K., Ohtake, H. (1996). Optimal operation of bioreactor system developed for the treatment of chromate wastewater using Enterobacter cloacae HO-1, Water Science and Technology, vol. 34, № 5–6, pp. 173–182. (in Russian).
8. Chirwa, E. M., Wang, Y. T. (1997). Hexavalent chromium reduction by Bacillus sp. in packed-bed bioreactor, Environmental Science & Technology, vol. 31, № 5, pp. 1446–1451. (in Russian).
9. Karnachuk, O. E. (1995). Vliyanie shestivalentnogo hroma na obrazovanie serovodoroda sul’fatreduciruyushrmi bakteriyami, Mikrobiologiya, t. 64, № 3, pp. 315–319. (in Russian).
10. Lovley, U. R., Phillips, E. J. P. (1994). Reduction of chromate by Desulfovibrio vulgaris and its S3 cytochrome, Applied and Environmental Microbiology, vol. 60, № 2, pp. 726–728.
11. Ohtake, H., Fujii, E. Toda, K. (1990). Redaction of toxic chromate in industrial effluent by use of a chromate-reducing strain of Emterobacter cloacae, Environmental Technology Letters, vol. 2, pp. 663–668.
12. McLean, J., Beveridge, T. (2001). Chromate reduction by a Rseudomonad isolated from a site contaminated with chromated copper arsenate, Appl. Envir. Microbiol, vol. 67, № 3, pp. 1076–1084.
13. Pettrilli, F. L., De Flora, S. (1977). Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium, Applied and Environmental Microbiology, vol. 33, № 4, pp. 305–309.
14. Shen, H., Pritchard, P. H., Sewell, G. W. (1996). Microbial reduction of Sr(VI) during anaerobic degradation of benzoate, Environmental Science & Technology, vol. 30, № 5, pp. 1667–1674.
15. Shen, H., Wang, Y. (1993). Characteristic enzymatic reduction of hexavalent chromium by Echerichia coli, Applied and Environmental Microbiology, vol. 59, № 6, pp. 3771–3777.
16. Shen, H., Wang, Y. (1995). Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli and Pseudomonas putida, Applied and Environmental Microbiology, vol. 61, № 7, pp. 754–758.
17. Wang, Y., Mori, R., Komori, K. (1989). Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions, Applied and Environmental Microbiology, vol. 55, № 3, pp. 1665–1669.
18. Chirva, E. N., Wang, Y. T. (1997). Chromium (VI) reduction by Pseudomonas fluorescens LB3GG in fixed-film bioreactor, Journal of Environmental Engineering, vol. 123, № 8, pp. 760–766.
19. Chirva, E. N., Wang, Y. T. (2000). Simultaneous Cr(VI) reduction and phenol degradation by an anaerobic consortium of bacteria, Water Resources, vol. 34, № 8, pp. 2376–2384.
20. Shen, H., Wang, Y. T. (1994). Modeling hexavalent chromiurn reduction in Escherichia coli AGSS 33456, Biotechnology and Bioengineering, vol. 43, № 4, pp. 293–300.
21. Chirva, E. N., Wang, Y. T. (2001). Simultaneous chromium (VI) reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance, Water Resources, vol. 35, № 8, pp. 1921–1932.
22. Sidenko, V. P., Mordvinova, D. I., YArockaya, N. E. (1986). Ispol’zovanie immobilizovannyh kul’tur mikrobov–destruktorov dlya doochistki neftesoderzhashchih vod [Use of immobilized cultures of microbes-destructors for post-treatment of oily waters], Mikrobiologicheskij zhurnal, t. 48, № 5, pp. 26–29. (in Russian).

№2

WATERDISPOSAL

Baranchikova N. I., Epifanov S. P., Zorkaltsev V. I.METHODS OF HYDRAULIC CALCULATION OF AUTOMATIC FIRE EXTINGUISHING SYSTEMS
DOI: 10.23968/2305–3488.2018.20.2.3–9

Introduction: Russia has been intensively building high-rise buildings, multifunctional complexes, warehouses and car parks, including underground ones, where ignition sometimes leads to human casualties and large material losses in recent decades. Therefore it is important to efficiently solve the task of equipping buildings and structures with automatic fire protection systems to suppress fires with automatic fire extinguishing installations using water or solutions based on it as a fire extinguishing agent. The designed automatic fire extinguishing systems should provide the required irrigation intensity for a certain time and prevent excessive exposure to fire extinguishing substances in rooms where there is no fire to avoid damage to property and equipment. Methods and materials: the mathematical model of flow distribution in automatic fire extinguishing systems and water curtains is considered in the article, on the basis of which the problem of flow distribution with non-fixed selection from consumers is put. The proposed model allows to obtain more realistic values of water sampling through the nozzles (sprays) and pressures in the nodes. An algorithm for solving the considered flow distribution problem is presented in the form of a system of nonlinear algebraic equations, as well as a numerical example. A short characteristic of web-based software for modeling of water supply system and fire extinguishing is given. Results: a flow distribution model with non-fixed selections in the form of a system of nonlinear algebraic equations is proposed. It simultaneously allows finding all the required flow distribution parameters in multi-ring automated fire extinguishing installations. Conclusion: the proposed statement of the problem can be used for the hydraulic calculation of combined fire-fighting water pipes (internal fire-fighting water supply and automatic fire-extinguishing installation) and water curtains. The flow distribution model used in the article was used in the software package “ISIGR” and was tested on numerous examples.
Key words: the task of flow distribution, non-fixed nodal selection, automatic flow distribution system, water curtains, sprinklers, piezometric pressure, pressure, software.
References:
1. Shushkevich, E. V., Bastrykin, R. I., Aleshina, E. V. (2010). Osobennosti rezhima raboty sistemy podachi i raspredeleniya vody v usloviyah snizheniya vodopotrebleniya [Peculiarities of operation of the system of supply and distribution of water in the face of declining water use]. Water Supply and Sanitary Technique, № 10, part 1, pp. 16–19. (in Russian).
2. Bubyr’, N. F., Baburov, V. P., Mangasarov, V. I. (1984). Pozharnaya avtomatika [Fire automatics]. M.: Strojizdat, 208 p. (in Russian).
3. Gerlovin, E. N. (1974). Avtomaticheskie sredstva obnaruzheniya i tusheniya pozharov [Automatic fire detection and suppression equipment]. M.: Strojizdat, 240 p. (in Russian).
4. Baratov, A. N., Ivanov, E. N., Korol’chenko, A. Ya. (1987). Pozharnaya bezopasnost’. Vzryvobezopasnost’ [Fire safety. Explosion safety]. M.: Himiya, 272 p. (in Russian).
5. MCHS RF (2009). SP 5.13130. 2009. Sistemy protivopozharnoj zashchity. Ustanovki pozharnoj signalizacii I pozharotusheniya avtomaticheskie [Fire protection system. Fire alarm and fire extinguishing systems are automatic]. M.: MCHS RF, 100 p. (in Russian).
6. GUGPS MVD RF (2001). NPB 88-2001*. Ustanovki pozharotusheniya i signalizacii. Normy i pravila proektirovaniya [Fire extinguishing and alarm systems. Norms and rules of design]. M.: GUGPS MVD RF, 51 p. (in Russian).
7. Grudanova, O. V. (2006). Analiticheskij metod gidravlicheskogo rascheta avtomaticheskih ustanovok vodyanogo pozharotusheniya v gradostroitel’stve [Analytical method for hydraulic calculation of automatic installations of fire extinguishing in urban planning]. Kand. tekhn. nauk. SanktPeterburg.(in Russian).
8. Ivanov, E. N. (1990). Raschet i proektirovanie system protivopozharnoj zashchity [Calculation and design of fire protection systems]. M.: Himiya, 384 p. (in Russian).
9. Nacional’noe ob»edinenie stroitelej, Nacional’noe ob»edinenie proektirovshchikov (2014). Ustrojstvo system vodosnabzheniya, kanalizacii i vodyanogo pozharotusheniya [Installation of water supply, sewerage and water fire extinguishing systems]. STO NOSTROJ/NOP 2.15.71-2012. M.: Izdatel’stvo «BST», 36 p. (in Russian).
10. Kachalov, A. A., Kuznecova, A. E., Bogdanova, N. V. (1975). Protivopozharnoe vodosnabzhenie [Fire-fighting water supply]. M.: Strojizdat, 272 p. (in Russian).
11. MCHS RF (2009). SP 10.13130.2009. Sistemy protivopozharnoj zashchity. Vnutrennij protivopozharnyj vodoprovod. Trebovaniya pozharnoj bezopasnosti [Fire protection System. Internal fire-prevention water supply. Fire safety requirements]. M.: MCHS RF, 13 p. (in Russian).
12. Meshman, L. M., Carichenko, S. G., Bylinkin, V. A., Aleshin, V. V., Gubin, R. Yu. (2002). Proektirovanie vodyanyh i pennyh avtomaticheskih ustanovok pozharotusheniya [Design of water and foam automatic fire extinguishing installations]. M: FGU VNIIPO MVD Rossii, 413 p. (in Russian).
13. Senchishak, T. I. (2003). Zashchitnye vodyanye zavesy dlya bor’by s gazoparovozdushnymi oblakami goryuchih gazov i toksichnyh veshchestv [Protective water curtain to combat hazoprovidne clouds of combustible gases and toxic substances]. Kand. tekhn. nauk. Moskva, 170 p. (in Russian).
14. Merenkov, A. P., Hasilev, V. Ya. (1985). Teoriya gidravlicheskih cepej [Theory of hydraulic circuits]. M.: Nauka, 294 p. (in Russian).
15. Ministerstvo morskogo flota SSSR (1987). VSN 12-87/MMF. Prichal’nye kompleksy dlya peregruzki nefti i nefteproduktov, Protivopozharnaya zashchita. Normy proektirovaniya [Berthing complexes for oil and oil products transshipment, fire protection. Design standards]. M.: Ministerstvo morskogo flota SSSR, 13 p. (in Russian).
16. Boldyrev, V. V. (2016). Gidravlicheskij raschet vodyanoj zavesy kak truboprovoda s poputnym raskhodom [Hydraulic calculation of water curtain as pipelines with associated flow]. Water Supply and Sanitary Technique, № 11, pp. 64–68. (in Russian).
17. Epifanov, S. P., Zorkal’cev, V. I. (2012). Zadacha potokoraspredeleniya s nefiksirovannymi otborami [The Problem of flow with non-fix selection]. Water Supply and Sanitary Technique, № 9, pp. 30–35. (in Russian).
18. Evstigneev, V. A., Kas’yanov, V. N. (1999). Tolkovyj slovar’ po teorii grafov v informatike i programmirovanii [Explanatory dictionary of graph theory in computer science and programming]. Novosibirsk: Nauka, 288 p. (in Russian).
19. Shterenliht, D. V. (2006). Gidravlika [Hydraulics: Textbook for universities]. M.: KolosS, 656 p. (in Russian).
20. Novickij, N. N., Mihajlovskij, E. A. (2016). Programmnovychislitel’nyj kompleks “ISIGR” dlya primeneniya metodov teorii gidravlicheskih cepej v seti Internet [Software package “ISIGN” to apply methods of the theory of hydraulic circuits in a network the Internet]. Nauchnyj vestnik NGTU, № 3(64), pp. 30–43. (in Russian).
21. Novickij, N. N., Mihajlovskij, E. A. (2017). Innovacionnyj programmnyj kompleks “ISIGR” dlya modelirovaniya rezhimov raboty sistem vodosnabzheniya [Innovative program complex “ISIGN” for modeling of operation modes of water supply systems]. Water Supply and Sanitary Technique, № 12, pp. 45–49. (in Russian).
22. Baranchikova, N. I., Epifanov, S. P., Zorkal’cev, V. I. (2014). Nekanonicheskaya zadacha potokoraspredeleniya s zadannymi naporami i otborami v uzlah [non-Canonical flow distribution problem with given pressures and selections in nodes]. Water and Ecology, № 2, pp. 31–38. (in Russian).

Dzjubo V. V., Alferova L. I., Vasiliev V. M.ON SOME FEATURES OF OZONE TREATMENT OF GROUND WATERS
DOI: 10.23968/2305–3488.2018.20.2. 10–16

Introduction: subject of researches of authors were technological parameters of process of ozonization as steps of preliminary processing of underground waters before filtering in the technological scheme of their water treatment. Methods and materials: entered a research problem: to establish doses (concentration) of the dissolved ozone necessary for oxidation of the iron forms dissolved in water (Fe 2+) and manganese (Mn 2+ ) in various concentration; to define limit doses of the dissolved ozone depending on concentration of iron and manganese; experimentally to establish quality of the received conditioned water by ozonization with the subsequent filtering depending on initial concentration of iron and manganese and a dose of ozone. Results: influence of temperature on efficiency of removal of iron at ozonization considerably affects at ozone doses to 1,5–1,8 mg/l, at higher doses of ozone influence of water temperature not considerably. In the studied contact duration intervals from 2 to 8 min and doses of ozone from 2,5 to 1,2 mg/l efficiency of removal of iron makes 86,4–99,8 %, respectively. Manganese rather easily is removed low doses of ozone with the subsequent filtering if its concentration don’t exceed 0,3 mg/l, practically at any concentration of the dissolved Fe 2+. The necessary dose of ozone for removal of manganese to the demanded norms (0,1 mg/l), made 2,1–2,8 mg/l. At ozone doses in the conditioned water to 5,5 mg/l and its filtering with a speed not higher than 12 m/h, residual concentration of manganese decreased up to the “trace size”. Conclusion: in certain conditions at oxidation by ozone the iron dissolved in water (Fe 2+) has the competing effect concerning the dissolved manganese (Mn2+) which thus completely isn’t oxidized and, as a result, completely isn’t extracted from water at the subsequent filtering. The increase (over 3 mg/l) in a dose of the dissolved ozone when processing the underground waters containing the dissolved iron in concentration to 3,5 mg/l and manganese in concentration to 0,3 mg/l leads to a boomerang effect — deterioration of the conditioned water according to the residual content of manganese.
Key words: underground waters, water processing by ozone, oxidation of impurity ozone, a dose of the dissolved ozone, ozonization parameters.
References:
1. Apeltsina, E. I., Alekseev, L. P., Cherskaya, H. O. (1992). Problemy ozonirovaniya pri podgotovke pit’evoj vody [Ozonization problems by preparation of drinking water]. Water Supply and Sanitary Technique, № 4, pp. 22–27. (in Russian).
2. Hoigne, J. (1988). The chemistry of ozone in water. Process technologies for water treatment: Plenum Publ. Corp., pp. 16–22.
3. Bо, D. (2000). Praktika ozonirovaniya v obrabotke pit’evyh vod [Practice of ozonization in processing of drinking waters]. Water Supply and Sanitary Technique, № 1, pp. 26–29. (in Russian).
4. Bernhardt, H., Hoyer, O., Schoenen, D. (1996). UVdisinfections of treated surface water. In: Ozone, Ultraviolet light, Advanced Oxidation Processes in Water Treatment. Amsterdam, p. 68–74.
5. Dzyubo, V.V., Alferova, L.I. (1997). Issledovanie vozmozhnosti i effektivnosti ozonirovaniya podzemnyh vod Zapadnoj Sibiri dlya pit’evogo vodosnabzheniya [Research of opportunity and efficiency of ozonization of underground waters of Western Siberia for drinking water supply]. Izvestiya vuzov. Stroitel’stvo, № 6, pp. 85–89. (in Russian).
6. Draginskij, V. L., Alekseeva, L. P. (1996). Primenenie ozona v tekhnologii podgotovki vody [Use of ozone in technology of preparation of water]. Informacionnyj centr «Ozon». Informacionnye materialy, vol. 2, pp. 4–6. (in Russian).
7. Razumovsky, S. D., Zaikov, G. E. (1974). Ozon i ego reakciya s organicheskimi soedineniyami [Ozone and its reaction with organic compounds]. M.: Nauka, 322 p. (in Russian).
8. Zhukov, N. N., Draginsky, V. L., Alekseeva, L. P. (2000). Ozonirovanie vody v tekhnologii vodopodgotovki [Ozonization of water in technology of water treatment]. Water Supply and Sanitary Technique, № 1, pp. 2–4. (in Russian).
9. Kozhinov, V. F., Kozhinov, I. V. (1974). Ozonirovanie vody [Water ozonization]. M.: Stroyizdat, 159 p. (in Russian).
10. Grasso, D., Weber, W. J., Dekam, J. A. (1989). Effects of preoxidation with ozone on water quality: a case study. American Water Works Association Journal, vol. 81, p. 22–28.
11. Artemenok, N. D. (1987). Osobennosti pokazatelej kachestva podzemnyh vod Zapadno-Sibirskogo artezianskogo bassejna [Features of indicators of quality of underground waters of the West Siberian artesian basin]. In: Rational use of natural waters, improvement of their quality and cleaning of production drains on railway transport. Dnepropetrovsk: Izdatel’stvo DIIT, pp. 66–72. (in Russian).
12. Alekseev, M. I., Dzyubo, V. V., Alferova, L. I. (1999). Formirovanie sostava podzemnyh vod Zapadno-Sibirskogo regiona i osobennosti ih ispol’zovaniya dlya pit’evogo vodosnabzheniya [Formation of composition of underground waters of the West Siberian region and feature of their use for drinking water supply]. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta, pp. 183–199. (in Russian).
13. Ermashova, N. A. (1982). Nekotorye geohimicheskie osobennosti podzemnyh vod paleogenovogo kompleksa yugovostochnoj chasti Zapadno-Sibirskogo artezianskogo bassejna [Some geochemical features of underground waters of a paleogenovy complex of southeast part of the West Siberian artesian basin]. In: Voprosy izucheniya poverhnostnyh i podzemnyh vod Sibiri, Irkutsk, pp. 90–96. (in Russian).
14. Dzyubo, V. V. (2007). Podgotovka podzemnyh vod dlya pit’evogo vodosnabzheniya malyh naselennyh punktov Zapadno-Sibirskogo regiona [Preparation of underground waters for drinking water supply of small settlements of the West Siberian region]. Dr. of tech. sciences. Tomsk. (in Russian).
15. Alferova, L. I., Dzyubo, B. B. (2005). Intensifikaciya stadii aehracii v tekhnologiyah ochistki podzemnyh vod [An aeration stage intensification in technologies of purification of underground waters]. Water and ecology, № 3, pp. 3–7. (in Russian).
16. Dzyubo, V. V., Alferova, L. I. (2003). Aehraciya-degazaciya podzemnyh vod v processe ochistki [Aeration decontamination of underground waters in the course of cleaning]. Water Supply and Sanitary Technique, № 6, pp. 21–25. (in Russian).
17. Draginsky, V. L., Alekseeva, L. P. (1997). Ochistka podzemnyh vod ot soedinenij zheleza, marganca i organicheskih zagryaznenij [Purification of underground waters of compounds of iron, manganese and organic pollution]. Water Supply and Sanitary Technique, № 12, pp. 16–19. (in Russian).

Karmazinov F. V., Ignatchik S. Yu., Kuznecova N. V., Kuznecov P. N., Fes’kova A. YaMETHODS FOR CALCULATING THE SURFACE RUN-OFF
DOI: 10.23968/2305–3488.2018.20.2.17–24

Introduction: the requirements for treatment and discharge of surface run-off have been tightened lately. For this reason, refusals of State Expertise and Federal Agency for Fisheries (Rosrybolovstvo) territorial divisions to approve activities related to designed capital construction projects based on Article 60 of the Water Code of the Russian Federation, prohibiting the discharge of waste waters that have not undergone sanitary purification and neutralization into bodies of water, have become common. Under these circumstances, information on the actual rate of run-off resulting from rainfall, differing from the estimated run-off rate, becomes important. Such run-off primarily results from overestimated rainfall when it is impossible to measure the run-off rate due to drainage systems operating in the forced flow mode and flooding of flow rate meters. The purpose of the study is to improve methods for calculating the surface run-off rate, aimed to increase estimate reliability and justification of reserves in such systems to cut costs at construction and operation stages. Purpose of the study: to justify methods for calculating the run-off rate in combined water discharge systems, experimental studies were conducted in one of the Saint Petersburg water discharge basins with a total area of 96.97 ha, a maximum surface slope of 0.006, and weighted average run-off coefficient ψav = 0.46. Results: it has been established that the use of simplified hydraulic simulation with account for street drainage systems only (without household ones) leads to an overestimation of the estimated run-off rate by up to 20 %. An express method for estimating the run-off rate in combined water discharge systems was experimentally justified. The method allows using hydraulic simulation taking into account street drainage systems only, being a basis for the simulation of virtual reservoirs, volumes of which are equal to the volume of household drainage systems connected to such reservoirs. The possibility of using standard methods for determining the maximum run-off rate at the operation stage depending on the actual q20a rainfall intensity was experimentally confirmed. To increase calculations reliability, it is mandatory not to use coefficient β as a constant but calculate it depending on actual q20a rainfall intensity according to the following equation: β = 1,2915∙q20а –0,055. Conclusion: the use of the methods developed makes it possible: to justify design stage solutions reducing the estimated performance of rainwater and combined water discharge systems by 12 %; to reduce the labor input and duration of initial data preparation for hydraulic simulation of water discharge systems and water collectors.
Key words: water discharge systems, sewage pumping stations (SPS), waste waters, surface run-off, flow rate meters, drainage area.
References:
1. Federalnyj zakon RF [Federal law] (2011). «O vodosnabzhenii i vodootvedenii». № 416-FZ ot 07.12.2011 g. (in Russian).
2. Federalnyj zakon RF [Federal law] (2011). «Vodnyj Kodeks Rossijskoj Federacii». № 416-FZ ot 07.12.2011 g. (in Russian).
3. Federalnyj zakon RF [Federal law] (2015). «Ob ohrane okruzhayushchej sredy». № 7-FZ ot 10.01.2002 g. (v redakcii ot 29.12.2015 g.). (in Russian).
4. Minregion Rossii (2012). SP 32.13330.2012. Kanalizaciya. Naruzhnye seti i sooru-zheniya [Sewerage. External networks and facilities]. M.: Minregion Rossii, 85 p. (in Russian).
5. Gosstroj SSSR (1986). SNiP 2.04.03-85. Kanalizaciya. Naruzhnye seti i sooruzhe-niya [Sewerage. External networks and facilities]. M.: CITP Gosstroya SSSR, 84 p. (in Russian).
6. NII VODGEO (2014). Rekomendacii po raschetu sistem sbora, otvedeniya i ochistki poverhnostnogo stoka s selitebnyh territorij, ploshchadok predpriyatij i opredeleniyu uslo-vij vypuska ego v vodnye ob`ekty [Recommendations on the calculation of systems for collecting, diversion and cleaning of surface runoff from residential areas, sites of enterprises and determining the conditions for its release into water bodies]. M.: OAO «NII VODGEO», 89 p. (in Russian).
7. Ignatchik, V. S., Ivanovskij, V. S., Ignatchik S. Yu., Kuznecova, N. V. (2015). Sistema diagnostiki raskhoda vody [Water flow diagnostic system]. № 2557349. (in Russian).
8. Karmazinov, F. V., Probirskij, M. D., Ignatchik, V. S. (2016). Sistema diagnostiki pritoka vody [The system of diagnostics of water inflow]. № 2596029. (in Russian).
9. Ignatchik, V. S., Ivanovskij, V. S., Ignatchik, S. Yu., Kuznecova, N. V. (2016). Sistema ocenki sbrosov stochnyh vod v okruzhayushchuyu sredu [The system for assessing wastewater discharges into the environment]. № 2599331. (in Russian).
10. Karmazinov, F. V., Pankova, G. A., Mihajlov, D. M., Kurganov, Yu. A. (2017). Sistema dlya ocenki i prognozirovaniya sbrosov stochnyh vod [The system for the assessment and prediction of wastewater discharges]. № 2606039. (in Russian).
11. Karmazinov, F. V., Pankova, G. A., Mihajlov, D. M., Ignatchik, S. Yu. (2016). Metodika ocenki ob`emov avarijnyh sbrosov stochnyh vod v okruzhayushchuyu sredu [Methodology for assessing the volume of emergency discharges of sewage into the environment]. Water Supply and Sanitary Technique, № 6, pp. 49–54. (in Russian).
12. Karmazinov, F. V. (2000). Povyshenie ehkspluatacionnoj nadezhnosti, upravlyaemosti i ehffektivnosti sistemy vodootvedeniya krupnogo goroda [Increase of operational reliability, controllability and efficiency of a water drainage system of a large city]: avtoreferat diss. d-r tekhn. nauk. SanktPeterburg, 87 p. (in Russian).
13. Ignatchik, S. Yu., Kuznecov, P. N. (2017). Metody ocenki i puti snizheniya sbrosov stochnyh vod v okruzhayushchuyu sredu. Chast’ 1. Metody ocenki i puti snizheniya sbrosov stochnyh vod pri zasoreniyah ili avariyah na uchastkah vodootvodyashchih setej [Estimating methods and ways of reducing waste water decrease in the environment. Part 1. Assessment methods and ways of reducing wastewater discharges when clogging or accidents at drainage network sites]. Water and Ecology, № 1, pp. 13–23. (in Russian).
14. Karmazinov, F. V., Pankova, G. A., Mihajlov, D. M., Ignatchik, S. Yu. (2016). Metodika ocenki ob`emov avarijnyh sbrosov stochnyh vod v okruzhayushchuyu sredu [Methodology for assessing the volume of emergency discharges of sewage into the environment]. Water Supply and Sanitary Technique, № 6, pp. 49–54. (in Russian).
15. Ignatchik, V. S., Kuznecov, P. N. (2016). Optimizaciya sistem vodosnabzheniya i vodootvedeniya [Optimization of water supply and sewerage systems]. Water and Ecology, № 4, pp. 26–35. (in Russian).
16. Ignatchik, S. Yu. (2010). Obespechenie nadyozhnosti i ehnergosberezheniya pri raschyote sooruzhenij dlya transportirovaniya stochnyh vod [Ensuring reliability and energy saving in the calculation of facilities for the transport of waste water]. Water Supply and Sanitary Technique, № 8, pp. 56–62. (in Russian).

Kassymbekov Zh. K.VACUUM CLEANING OF SEWERAGE WELLS USING THE EXHAUST GAS ENERGY OF THE TRACTOR
DOI: 10.23968/2305–3488.2018.20.2.25–31

Introduction: the article describes the results of the development of an installation for vacuum cleaning of sewage wells and testing it in laboratory and field conditions. In it, unlike the existing methods, evacuation is carried out by using the exhaust gas energy of the base tractor with the help of an ejector pressure-vacuum device installed on the exhaust pipe. Methods and materials: based on the test of the ejector device, it was found that for small values of the relative pressure drop, increasing the suction depth leads to a decrease in the water ejection coefficient, and when the pressure drop increases, the value of the coefficient increases. With a stable ejector operating mode, the ejection ratio of the suction gas is normalized, which positively affects the suction capacity of the device by the pulp. Reducing the compression ratio does not particularly affect the suction capacity of the ejector. Results: it is established that the proposed design is operable and can be used to clean manholes from sand-gravel deposits of fineness up to 10...15 mm with a degree of purification up to 96–98 %.
Key words: inspection wells, cleaning, exhaust gas energy, vacuum-ejector unit, test.
References:
1. Alekseev, M. I., Ermolin, Yu. A. (2010). Nadezhnost’ sistem vodootvedeniya [Reliability of water disposal systems]. SPb.: SPbGASU, 165 p. (in Russian).
2. Drozd, G. Ya. (1997). Povyshenie ehkspluatacionnoj dolgovechnosti i ehkologicheskoj bezopasnosti kanalizacionnyh setej [Increase of operational durability and ecological safety of sewer networks]. Donbasskaya gos. akademiya stroitel’stva i arhitektury. (in Russian).
3. Minregion Rossii (2012). SP 32.13330.2012. Kanalizaciya. Naruzhnye seti i sooruzheniya [Sewerage. External networks and facilities]. M.: Rosstandart, 91 p. (in Russian).
4. Zenitov, N. A. (2000). Mashiny i oborudovaniya dlya soderzhaniya kanalizacionnyh i vodostochnyh setej [Machines and equipment for the maintenance of sewer and drainage networks]. Water Supply and Sanitary Technique, № 9, pp. 17–22. (in Russian).
5. (2003). Sovremennye kommunal’nye mashiny dlya soderzhaniya vodostochnyh i kanalizacionnyh setej [Modern communal machines for the maintenance of drainage and sewage networks]. Vodosnabzheniya i sanitarnaya tekhnika, № 2, p. 16. (in Russian).
6. Mashiny dlya vakuumnoj ochistki smotrovyh kolodcev [Machines for vacuum cleaning of inspection wells] (2009). [online] Available at: https://vektornpo.ru/catalog [accessed on 17.02.2018]. (in Russian).
7. Mashina dlya ochistki smotrovyh i dozhdevyh kolodcev MOK–188 [The machine for cleaning inspection and rainwater wells МОК-188] (2017). [online] Available at: http://www. oborudunion.ru/mashina-dlya-ochistki-smotrovyh-i-dojdevyhkolodcev-mok-188-999800836 [accessed on 17.02.2018]. (in Russian).
8. Kasymbekov, Zh. K. (2003). Gidrociklonnoehzhektornye tekhnologii pod»ema vody i ochistki sooruzhenij sel’skohozyajstvennogo vodosnabzheniya [Hydrocycloneejector technologies for water lifting and cleaning of agricultural water supply facilities]. Taraz. (in Russian).
9. Soloviev, A. (2012). Ispol’zovanie ehnergii vyhlopnyh gazov v silovyh gazovyh turbinah [Use of energy of exhaust gases in power gas turbines.]. Available at: http://www.magistrblog.ru/ view_post.php?id=787 [accessed on 17.02.2018]. (in Russian).
10. Kurginyan, A. (2014) Energiya vyhlopnyh gazov [Energy of exhaust gases]. Available at: http://trial-news.ru/ zdorovie/energiya-vyhlopnyh-gazov/ [accessed on 11.03.2018]. (in Russian).
11. Vahitov, Yu. R. (2012). Agregaty nadduva dvigatelej [Units of supercharging engines: a training manual]. Ufa: UGATU, 158 p. (in Russian).
12. Kolchin, A. I., Demidov, V. P. (2008). Raschet avtomobil’nyh i traktornyh dvigatelej [Calculation of automobile and tractor engines]. M.: Vysshaya shkola, 496 p. (in Russian).
13. Isaev, S. V. (2013). Process ehzhekcii i smesheniya potokov gaza v apparatah ciklonnogo tipa [The process of ejection and mixing of gas flows in a cyclone type apparatus]. Sankt-Peterburg. (in Russian).
14. Lagutkin, M. G., Isaev, S. V. (2012). Raschet parametrov raboty vihrevogo ehzhektora [Calculation of the parameters of the vortex ejector]. In: XXV Mezhdunarodnaya nauchnaya konferenciya “Matematicheskie metody v tekhnike i tekhnologiyah”. Volgograd: VolgGTU, pp. 29–30. (in Russian).
15. Sejtasanov, I. S. (2014) Issledovanie zakruchennogo techeniya v gidroehlevatorah [Investigation of swirling flow in hydroelevators]. Molodoj uchenyj, № 1, pp. 116–119. (in Russian).
16. Sychenkov, V. A., Panchenko, V. I., Haliulin, R. R. (2014). Issledovanie mnogofaznyh ehzhektorov [Investigation of multiphase ejectors]. Vіsnik NTU «HPI», № 13(1056), pp. 72–76. (in Russian).

Koshelev А. V., Vedeneeva N. V., Zamatyrina V. A., Tichomirova E. I., Skidanov E. VDEVELOPMENT OF TECHNOLOGY FOR OBTAINING SORBENTS BASED ON BENTONITE CLAYS FOR WATER PURIFICATION SYSTEMS
DOI: 10.23968/2305–3488.2018.20.2.32–39

Introduction: the article is devoted to the technology of creating sorbents based on bentonite clays. The urgency of development is determined by the growing interest in the creation of new environmentally friendly sorbents from natural aluminosilicates. However, a deterrent to the widespread use of bentonites for water purification is the lack of efficient granulation technologies, since clay minerals are susceptible to dispersing in aqueous media. Methods and materials: to substantiate the possibility of using the developed technology of granulation of bentonite, as well as the obtained samples of sorbents in the course of water preparation, their mineralogical composition was studied by X-ray phase analysis, the specific surface area, porosity (pore volume, pore radius distribution) was analyzed by sorption and capillary condensation of gases, chemical and mechanical durability of granules was determined. After studying the physical properties, the sorption capacity of the samples was evaluated for color and turbid solutions, as well as solutions containing heavy metals. Results: a detailed analysis of the physical and chemical properties of the developed sorbents showed that they meet the requirements of Russian National Standard and are effective for use both as an independent filtering material and as a component in water treatment systems.
Key words: sorbents, bentonite granules, sorption capacity, water purification, aluminosilicates.
References:
1. Borden, D., Giese, R. F. (2001). Baseline studies of the clay minerals society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner, vol. 49, pp. 444–445.
2. Lin, S. H., Juang, R. S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, vol. 92, № 3, pp. 315–326.
3. Braun, G. (1965). Rentgenovskie metody izucheniya i struktura glinistyh mineralov [X-ray methods of studying and the structure of clay minerals]. M.: MIR, 307 p. (in Russian).
4. Vedeneeva, N. V., Koshelev, A. V., Zamatyrina, V. A. (2017). Ocenka ehffektivnosti sorbcii veshchestv gumusovoj prirody na model’nyh rastvorah [Estimation of sorption efficiency of substances of humic nature on model solutions]. In: Ekologicheskie problemy promyshlennyh gorodov, pp. 424–428. (in Russian).
5. Belikov, S. E. (ed.) (2007). Vodopodgotovka: spravochnik [Water treatment: Handbook]. M.: Akva-Term, 240 p. (in Russian).
6. Godovikov, A. A. (1983). Mineralogiya [Mineralogy]. M.: Nedra, 460 p. (in Russian).
7. Gosstandart Rossii (2000). GOST R 51641–2000. Materialy fil’truyushchie zernistye. Obshchie tekhnicheskie usloviya [Filtering granular materials. General specifications]. M.: Standartinform, 13 p. (in Russian).
8. Karnauhov, A. P. (1999). Adsorbciya. Tekstura dispersnyh i poristyh materialov [Adsorption. Texture of dispersed and porous materials]. Novosibirsk: Nauka, Sib. Predpriyatie RAN, 470 p. (in Russian).
9. Kirsanov, N. V. (1981). Geneticheskie tipy i zakonomernosti rasprostraneniya mestorozhdenij bentonitov v SSSR [Genetic types and regularities of the distribution of bentonite deposits in the USSR]. M.: Nedra, 214 p. (in Russian).
10. Komarov, V. S. (1997). Adsorbenty: voprosy teorii, sinteza i struktury [Adsorbents: questions of theory, synthesis and structure]. Minsk: Belaruskaya navuka, 287 p. (in Russian).
11. Komov, D. N., Nikitina, N. V., Kazarinov, I. A. (2015). Sorbenty na osnove prirodnyh bentonitov, modificirovannye poligidroksokationami zheleza (III) i alyuminiya metodom “zol’-gel’” [Sorbents based on natural bentonites, modified with iron (III) polyhydroxocations and aluminum by the “sol-gel” method]. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Himiya. Biologiya. Ekologiya, vol. 15, № 2, pp. 27–34. (in Russian).
12. Kukovskij, E. G. (1966). Osobennosti stroeniya i fizikohimicheskie svojstva glinistyh mineralov [Features of the structure and physical and chemical properties of clay minerals]. Kiev, Naukova dumka, 128 p. (in Russian).
13. Orlov, A. A., Spirin, V. F. (2006). Gigienicheskie voprosy sel’skogo vodosnabzheniya v sovremennyh usloviyah [Hygienic issues of rural water supply in modern conditions]. In: Ekologiya cheloveka, gigiena i medicina okruzhayushchej sredy na rubezhe vekov: sostoyanie i perespektivy razvitiya, M., pp. 375–379. (in Russian).
14. Osipov, V. I., Sokolov, V. N., Rumyancev, N. A. (1989). Mikrostruktura glinistyh porod [Microstructure of clay rocks]. M.: Nedra, 211 p. (in Russian).
15. Osipov, V. I. Sokolov, V. N. (2013). Gliny i ih svojstva. Sostav, stroenie i formirovanie svojstv [Clays and their properties. Composition, structure and formation of properties]. M.: GEOS, 576 p. (in Russian).
16. Raff, P. A., Selyukov, A. V., Bajkova, I. S. (2011). Tekhnologiya kontaktnogo osvetleniya vody v usloviyah Volzhskogo vodozabora g. Kazani [Technology of contact clarification of water in the conditions of the Volga water intake in Kazan]. Water Supply and Sanitary Technique, № 6, pp. 25–29. (in Russian).
17. Tarasevich, Yu. I. (1975). Adsorbciya na glinistyh mineralah [Adsorption on clay minerals]. Kiev: Naukova dumka, 351 p. (in Russian)

Olkova A. S.CURRENT TRENDS IN THE DEVELOPMENT OF THE METHODOLOGY OF BIOASSAY AQUATIC ENVIRONMENTS
DOI: 10.23968/2305–3488.2018.20.2.40–50

Introduction: the modern methodology of bioassay is developing in the following areas: the development and implementation of new methods bioassays, the development of special devices for bioassay, the detection of new informative test functions based on the accounting of sublethal effects in laboratory organisms, the evaluation and interpretation of the results of toxicological analysis of environmental components. Methods and materials: the experience of world scientists has been analyzed in order to identify the methodological aspects of the development of a group of methods in studies using biotesting. New approaches to optimizing biotesting methods are developed using accumulated material of toxicological analyzes. Results: we offer three directions for evaluation and optimizing of approaches and methods bioassays. First, we propose an algorithm for selecting protocols of bioassay. The second direction of optimization of methods bioassays is the control of health in test cultures throughout the life cycle of individuals of a biological species. The third part of our work is the development of a system of test functions for laboratory animals that consistently evaluated during a toxicological experiment. The system allows to estimate pre-lethal, lethal, chronic and delayed toxicological effects. Conclusion: the proposed optimization of bioassay takes into account the multifactorial nature of obtaining objective results of toxicological analyzes. Researchers can consistently use three parts of evaluation and optimizing of approaches bioassay at the planning stage of environmental studies and continue to implement them in the research process.
Key words: bioassay, bioassay methodology, methods of bioassay, test function, laboratory test-organism.
References:
1. Belinskaya, E. A., Mazina, S. E., Zykova, G. V., Zvolinskiy, V. P. (2017). Biotestirovaniyе stoykikh organicheskikh zagryazniteley i politsiklicheskikh aromaticheskikh uglevodorodov [Biotesting of persistent organic pollutants and polycyclic aromatic hydrocarbons]. Uspekhi sovremennoy nauki, 5 (1), pp. 35–43. (in Russian).
2. Vorobyеva, O. V., Filenko, O. F., Isakova, E. F. (2013). Izmeneniya plodovitosti laboratornoy kultury D. magna [Changes in the fertility of laboratory culture D. magna]. Perspektivy nauki, № 9 (48), pp. 11–14 (in Russian).
3. Kutsenko, S. A. (2004). Osnovy toksikologii [Basics of Toxicology]. SPb.: Foliant, 720 p. (in Russian).
4. Lesnikov, L. A., Mosiyеnko, T. K. (1992). Priyеmy bioindikatsii, biotestirovaniya pri tekushchem nadzore za zagryaznennostyu vodnykh obyеktov i vyyavlenii prevysheniya ikh assimiliruyushchey sposobnosti. Metodicheskiyе ukazaniya [Methods of bioindication, biotesting with the current supervision of the contamination of water bodies and the detection of excess of their assimilating ability. Methodical instructions]. SPb.: GosNIORKh, 79 p. (in Russian).
5. Matorin, D. N., Venediktov, P. S. (2009). Biotestirovaniyе toksichnosti vod po skorosti pogloshcheniya dafniyami mikrovodorosley, registriruyеmykh s pomoshchyu fluorestsentsii khlorofilla. [Biotesting of water toxicity from the rate of absorption of daphnia microalgae, recorded by fluorescence of chlorophyll]. Vestnik Moskovskogo un-ta. Seria 16. Biologiya, № 3, p. 28–33. (in Russian).
6. Miseyko, G. N., Tushkova, G. I., Tskhay, I. V. (2001). Daphnia magna (Crustacea Cladocera) kak test-obyеkt v optimalnykh usloviyakh laboratornogo kultivirovaniya [Daphnia magna (Crustacea Cladocera) as a test object under optimal conditions of laboratory cultivation]. Izvestiya Altayskogo gosudarstvennogo universiteta, № 3, pp. 83–86. (in Russian).
7. Nikanorov, A. M., Zhulidov, A. V. (1991). Biomonitoring metallov v presnovodnykh ekosistemakh [Biomonitoring of metals in freshwater ecosystems]. L.: Gidrometeoizdat, 312 p. (in Russian).
8. Nikanorov, A. M., Trunov, N. M. (1999). Vnutrivodoyеmnyyе protsessy i kontrol kachestva prirodnykh vod [Intra-water processes and quality control of natural waters]. SPb.: Gidrometeoizdat, 150 p. (in Russian).
9. Nikanorov, A. M., Khoruzhaya, T. A., Brazhnikova, L. V., Zhulidov, A. V. (2000). Monitoring kachestva vod: otsenka toksichnosti [Monitoring of water quality: assessment of toxicity]. SPb.: Gidrometeoizdat, 159 p. (in Russian).
10. Olkova, A. S., Sannikova, E. A., Budina, D. V., Kutyavina, T. I., Zimonina, N. M. (2017). Otsenka toksichnosti prirodnykh i tekhnogennykh sred po dvigatelnoy aktivnosti Daphnia magna [Assessment of the toxicity of natural and man-made media for motor activity Daphnia magna]. Sovremennyyе problemy nauki i obrazovaniya, № 3. [online] Available at: https://www.science-education.ru/ru/article/view?id=26428 [accessed on 05.06.2017]. (in Russian).
11. Minprirody Rossii (2014). Prikaz № 536 ot 4 dekabrya 2014 g. Ob utverzhdenii Kriteriev otneseniya othodov k I-V klassam opasnosti po stepeni negativnogo vozdejstviya na okruzhayushchuyu sredu [On approval of the Criteria for classifying wastes as hazard classes I–V according to the degree of negative impact on the environment]. (in Russian).
12. Sinovets, S. Yu., Pyatkova, S. V., Kozmin, G. V. (2009). Eksperimentalnoyе obosnovaniyе ispolzovaniya allium-testa v radiologicheskom monitoringe [Experimental substantiation of the use of the allium test in radiological monitoring]. Izvestiya vysshikh uchebnykh zavedeniy. Radioenergetika, №1, p. 32–38. (in Russian).
13. Filenko, O. F., Terekhova, V. A. (2016). Ekologicheskoyе prednaznacheniyе biotestirovaniya [Ecological purpose of biotesting]. In: Biodiagnostika i otsenka kachestva prirodnoy sredy: podkhody, metody, kriterii i etalony sravneniya v ekotoksikologi. M.: MGU, pp. 232–239. (in Russian).
14. FR.1.39.2007.03222. (2007). Metodika opredeleniya toksichnosti vody i vodnykh vytyazhek iz pochv, osadkov stochnykh vod, otkhodov po smertnosti i izmeneniyu plodovitosti dafniy [The methodology for determining the toxicity of water and water extracts from soils, sewage sludge, waste by mortality and the change in the fertility of daphnia]. M.: Akvaros. (in Russian).
15. Brack, W., Ait-Aissa, S., Burgess, R. M. (2016). Effect-directed analysis supporting monitoring of aquatic environments. An in-depth overview. Science of The Total Environmental, vol. 544, pp. 1073–1118.
16. Beuth Verlag (2009). DIN EN ISO 15088:2009-06. Water quality. Determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio) (ISO 15088:2007) [online]. До¬ступно по ссылке: https://www.beuth.de/en/standard/din-en-iso-15088/113162875 [дата обращения 07.06.2018].
17. Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L., Parrella, A. (2005). Toxic and genotoxic evaluation of six antibiotics on nontarget organisms. Science of the total environment, vol. 346, pp. 87–98.
18. ISO 6341:2012. (2012). Water quality. Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Geneva: International Organization for Standardization, 22 p.
19. Kramer, K. J., Botterweg, J. (1991). Aquatic biological early warning systems: an overview. Bioindicators and environmental management. London: Academic Press, pp. 95–126.
20. Lammer, E., Carr, G. J., Wendler, K. (2009). Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comparative Biochemistry and Physiology. Part C: Toxicology & Pharmacology, № 149 (2), pp. 196–209.
21. Mikol, Y. B., Richardson, W. R., van der Schalie, W. H. (2007). An online real-time biomonitor for contaminant surveillance in water supplies. Journal american water works association, № 99 (2), pp.107–115.
22. Odum, E. P., Odum, H. T. (1953). Fundamentals of Ecology. Philadelphia: W. B. Saunders, 574 p.
23. Olkova, A. S., Kantor, G. Y., Kutyavina, T. I. Ashikhmina, T. Y. (2018). The importance of maintenance conditions of Daphnia magna Straus as a test organism for ecotoxicological analysis. Environmental Toxicology and Chemistry, 37(2), pp. 376–384.
24. Ostfeld, A., Salomons, E. (2004). Optimal layout of early warning detection stations for water distribution systems security. Journal of water resources planning and management, 130 (5), pp. 377–385.
25. Pandard, P., Devillers, J., Charissou, A. M., Poulsen, V. (2006). Selecting a battery of bioassays for ecotoxicological characterization of wastes. Science of the total environment, vol. 363, pp. 114–125.
26. Passos, J. L., Barbosa, L. C. A., Demuner, A. J., Barreto, R. W. (2010). Effects of Corynespora cassiicola on Lantana camara. Planta Daninha, vol. 28, pp. 229–237Poirier, D. G., Westlake, G. F., Abernethy, S. G. (1988). Daphnia magna acute lethality toxicity test protocol. Ontario: Queen’s Printer for Ontario, 32 с.
27. Repetto, G., Jos, A., Hazen, M. J., Molero, M. L. (2001). A test battery for the ecotoxicological evaluation of pentachlorophenol. Toxicol in Vitro, vol. 15, pp. 503–509.
28. Storey, M. V., van der Gaag, B., Burns, B. P. (2011). Advances in on-line drinking water quality monitoring and early warning systems. Water Research, 45(2), pp. 741–747.
29. Tousova, Z., Oswald, P., Slobodnik, J., Blaha, L. (2017). European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Science of the total environment, vol. 601–602, pp. 1849–1868.
30. Biesinger, K., Williams, L., van der Schalie, W. (1987). Users Guide: Procedures for conducting Daphnia magna toxicity bioassays. Las Vegas: US Environmental Protection Agency, 56 p.
31. Vincze, K., Graf, K., Scheil, V., Köhler, H.-R. (2014). Embryotoxic and proteotoxic effects of water and sediment from the Neckar River (Southern Germany) to zebrafish (Danio rerio) embryos. Environmental Sciences Europe, vol. 26, pp. 26–30.
32. Xia, P., Zhang, X., Zhang, H., Wang, P. (2017). Benchmarking water quality from wastewater to drinking waters using reduced transcriptome of human cells. Environmental science and technology, vol. 51 (16), pp. 9318–9326.
33. Zovko, M., Vidaković-Cifrek, Ž., Cvetković, Ž., Bošnir, J. (2015). Assessment of acrylamide toxicity using a battery of standardised bioassays. Archives of Industrial Hygiene and Toxicology, vol. 66, pp. 315–321

Ermolin Y. A., Alexeev M. I.RELIABILITY MEASURE OF A SEWER NETWORK
DOI: 10.23968/2305–3488.2018.20.2.51–58

Introduction: the ramified sewerage system for receiving and transferring household and industrial sewage typical for a large city is considered. Consideration is restricted to the sub-system of sewage conveyance (sewer network). Methods and materials: the relative raw sewage volume that could be potentially discharged to the environment as a result of component failures in the sewer network is proposed as a measure of overall system reliability. Results: a simple method for quick and proper calculation of this volume is presented. The problem reduced to finding of the raw sewage volume potentially discharged from the sewer network, and is solved using the following assumptions and limitations: mathematically, an urban sewer network is a simply connected, acyclic, oriented graph (so-called tree-like graph); of a pipe fails, its capacity becomes equal to zero; all specific peculiarities of a pipe (material, diameter, age, operating conditions, etc.) manifest itself in its failure rate; the network pumping stations are taken absolutely reliable. The basis for this method is a representation of the sewer network by a combination of structure-forming fragments. Each such fragment is formally substituted by a fictitious equivalent sewer that has a failure rate leading to the same output for the same input. Conclusion: as a result, the problem reduces to a sequential consideration of elementary sub-problems the solution of which is easily accomplished.
Key words: sewer network, reliability, sewage discharge, Y-like network fragment, decomposition-equivalenting method.
References:
1. Alekseev, M. I., Ermolin, Yu. A. (2010). Extension of the decomposition-equivalenting technique at the estimating of sewer network reliability. In: Proc. of the Conference in memory of academician S. V. Iakovlev, St. Peterburg: St. Peterburg State University of Architecture and Civil Engineering, pp. 19–21. (in Russian).
2. Bao, Y., Mays, L. W. (1990). Model for water distribution system reliability. J. of Hydraulic Engineering, vol. 116, pp. 1119–1137.
3. Yen, B. C., Tung, Y.-K. (ed.) (1993). Reliability and Uncertainty Analyses in Hydraulic Design. New York: American Society of Civil Engineers, 305 p.
4. Engelhardt, M. O., Skipworth, P. J., Savic, D. A., Saul, O. A. (2000). Rehabilitation strategies for water distribution networks: a literature review with a UK perspective. Urban Water, vol. 2, pp. 153–170.
5. Ermolin, Y. A. (2001). Estimation of raw sewage discharge resulting from sewer network failures. Urban Water, vol. 4, pp. 271–276.
6. Ermolin, Y. A. (2009). Reliability Estimation of Urban Wastewater Disposal Networks. In: Reliability Engineering Advances, New York: Nova Science Publishers, pp. 379–397.
7. Fujiwara, O., Ganesharajah, T. (1993). Reliability assessment of water supply systems with storage and distribution networks. Water Resources Research, vol. 29, pp. 2917–2924.
8. Gheisi, A., Forsyth, M., Naser, Gh. (2016). Water Distribution Systems Reliability: A Review of Research Literature. J. of Water Resources Planning and Management, vol. 142, issue 11, pp. 83–94.
9. Haghighi, A., Bakhshipour, A. E. (2016). Reliability-based layout design of sewage collection systems in flat areas. Urban Water Journal, vol. 13, issue 8, pp. 780–802.
10. Jin, Y., Mukherjee, A. (2010). Modeling blockage failures in sewer systems to support maintenance decision making. J. of Performance of Constructed Facilities, vol. 6, pp. 622–633.
11. Korn, G., Korn, T. (1961). Mathematical Handbook for Scientists and Engineers. New York, Toronto, London: McGraw-Hill Company, Inc., 943 p.
12. Kwietniewski, M., Lesniewski, M. (2006). The reliability assessment of a typical structure fragment of a stormwater collection network including uncertainty. In: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV, Wilga.
13. Mays, L. M. (ed.) (1989). Reliability analysis of water distribution systems. New York: American Society of Civil Engineering, 544 p.
14. Quimpo, R. G., Shamsi, U. M. (1991). Reliability based distribution system maintenance. J. of Water Resources Planning and Management Division, vol. 117, pp. 321–339.
15. Su, Y. C., Mays, L. W., Duan, N., Lansey, K. E. (1987). Reliability-based optimization model for water distribution systems. J. of Hydraulic Engineering, vol. 114, pp. 1539–1556.
16. Ventzel, E. (2001). Issledovanie operacij: zadachi, principy, metodologiya [Operations Analysis: Problems, Principles and Methodology]. M.: Vysshaja Shkola, 318 p. (in Russian).
17. Wagner, J. M., Shamir, U., Marks, D. H. (1988). Water distribution reliability. Analytical methods. J. of Water Resources Planning and Management Division, vol. 114, pp. 253–275.
18. Yermolin, Yu. A., Alexeev, M. I. (2012). Nadezhnost’ vodootvodyashchih setej i puti ee povysheniya [Reliable operation of wastewater collection systems and ways of its improvement]. Water Supply and Sanitary Technique, vol. 1. pp. 13–16. (in Russian).

Nevsky A. V., Kashina O. V., Xia, D., Sun, L., Zhao, H., Zhong, H.SCIENTIFIC AND TECHNOLOGICAL BASES FOR DESIGN OF INDUSTRIAL ENTERPRISE’S RESOURCE-SAVING WATER MANAGEMENT SYSTEMS
DOI: 10.23968/2305–3488.2018.20.2.59–69

Introduction: the conceptual regulations of the theory of sustainable socio-economic development provide the creation of resource-saving environmental friendly production, the basis of which are the effectively operating resource-saving water-use chemical processes (WUCP) of industrial plants. So, the objective of this investigation was the development of the designing methodology for scientific-reasonable resource-saving chemical processes of water management system for textile enterprises, which use the basic dyeing-finishing technology of cloth. Methods and materials: the thermodynamic exergy and thermodynamic water pinch methods of synthesis of resource-saving WUCP of industrial plants have been used and refined upon by us. The efficiency of proposed wastewater purification techniques — electrocatalytic destruction, photocatalytic destruction, catalytic destruction by hydrogen peroxide, coagulation, clarification filtration, magnetic treatment was studied on model and real effluents. The metal oxides were used as catalysts. The special eperimental technique for development of technology of heavy metals ions utilization as useful products, such as mineral pigments, has been proposed. Results: a seven-steps scheme was investigated for project design: 1) the source data gathering: environmental-oriented analysis (inventory) of industrial enterprise’s technology; 2) the design of integrated resource-saving water management system of industrial enterprise; 3) the design of repeatedly-serial water integrated chemical process system of industrial enterprise’s shops (process lines); 4) the development of wastewater purification techniques; 5) the development of intelligence (computer) system of resource-saving water management system of industrial enterprise; 6) the technological risk assessment and safety management system; 7) the estimation of ecologic and economic efficiency of the project. Conclusion: the methodology of designing of resource-saving WUCP of textile enterprises has been developed. The functional diagram of resource-saving WUCP of dyeing-finishing production of textile plant has been proposed. The structure of intelligence system application and software of resource-saving WUCP designing and operation has been developed. Wastewater purification techniques have been investigated. The electrocatalytic plus photocatalytic destruction and coagulation methods are proved to be most perspective in practice of sewage treatment. The basic technical-economic parameters of the project were estimated.
Key words: methodology of designing water management systems, water-use technological processes, thermodynamic exergy method, thermodynamic water pinch method, wastewater purification techniques, electrocatalytic metod, technological risk, ecologic-economic effectiveness.
References:
1. Nevsky, A. V., Meshalkin, V. P., Sharnin, V. A. (2004). Analiz i sintez vodnyh resursosberegayushchih himiko-tekhnologicheskih system [Analysis and synthesis of water resource chemical processes systems]. Moscow: Nauka, 212 p. (in Russian).
2. Nevsky, A. V., Kashina, O. V. (2012). Resursosberegayushchaya sistema vodnogo hozyajstva maslozhirovyh proizvodstv [Resource-saving system of water management for oils and fats production]. Saarbrucken: Lambert Academic Publishing, 254 p. (in Russian).
3. Nevsky, A. V., Kashina, O. V., Xia, D., Sun, L. (2015). Thermodynamic exergy analysis for designing optimal water-use chemical processes. Invited Report. In: XX International Conference on Chemical Thermodynamics in Russia. Nizhni Novgorod: Nizhni Novgorod University Press, 371 p.
4. Nevsky, A. V., Kashina, O. V. (2015). Termodinamicheskij podhod k proektirovaniyu optimal’nyh ehnergoresursosberegayushchih sistem vodnogo hozyajstva [Thermodynamic approach to the design of optimal energy-resource-saving water management systems]. Vodoochistka. Vodopodgotovka. Vodosnabzhenie, № 1, pp. 22–31. (in Russian).
5. Kashina, O. V., Bushuev, M. V., Nevsky, A. V. (2012). Eksergeticheskij analiz effekta massovoj nagruzki pri proektirovanii energoresursosberegayushchih sistem vodnogo hozyajstva [Exergic analysis of the mass load effect in the design of energy-resource-saving water management systems]. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya khimicheskaya tekhnologiya, vol. 55, № 9, pp. 97–103. (in Russian).
6. Nevsky, A. V., Vatagin, V. S., Sharnin, V. A., Usanova, O. A., Bushuev, M. V. (2010). Termodinamicheskij podhod k proektirovaniyu energoresursosberegayushchih himiko-tekhnologicheskih sistem vodopotrebleniya [The thermodynamic approach to designing of energy-efficient chemical process systems of water consumption]. Vestnik Kazanskogo tekhnologicheskogo universiteta, № 2, pp. 145– 148. (in Russian).
7. Jeżowski, J., Poplewski, G., Jeżowska, A. (2003). Optimization of water usage in chemical industry. Environmental Protection Engineering, vol. 29, № 1, pp. 97–117.
8. Seager, T. P., Theis, T. L. (2003). A thermodynamic basis for evaluating environmental policy trade-offs. Clean Technologies and Environmental Policy, vol. 4, № 4, pp. 217–226.
9. Prakash, R., Shenoy, U. V. (2005). Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chemical Engineering Science, vol. 60, № 1, pp. 255–268.
10. Pillai, H. K., Bandyopadhyay, S. (2007). A rigorous targeting algorithm for resource allocation networks. Chemical Engineering Science, vol. 62, № 22, pp. 6212–6221.
11. Tan, R. R., Col-long, K. J., Foo, D. C. Y. (2008). A methodology for the design of efficient resource conservation networks using adaptive swarm intelligence. Journal of Cleaner Production, vol. 16, № 7, pp. 822–832.
12. Kleidon, A., Schymanski, S. (2008). Thermodynamics and optimality of the water budget on land: a review. Geophysical Research Letters, vol. 35, № 20, pp. L20404.
13. Statyukha, G., Kvitka, O., Dzhygyrey, I., Jezowski, J. (2008). A simple sequential approach for designing industrial wastewater treatment networks. Journal of Cleaner Production, vol. 16, № 2, pp. 215–224.
14. Dzhygyrey, I., Kvitka, O., Jezowski, J., Statyukha, G. (2009). Distributed wastewater treatment network design with detailed models of processes. Computer Aided Chemical Engineering, vol. 26, pp. 853–858.
15. Nikanorov, A. M., Trofimchuk, M. M. (2010). Peculiarities in thermodynamics of intrabasin processes in fresh-water ecosystems under anthropogenic impact. Doklady Earth Sciences, vol. 433, № 1, pp. 954–956.
16. Estupiñan Perez, L., Martinez Riascos, C. A., Dechaine, G. P. (2015). Simplified conceptual design methodology for double-feed extractive distillation processes. Industrial and Engineering Chemistry Research, vol. 54, № 20, pp. 5481–5493.
17. Kutepov, A. M., Meshalkin, V. P., Nevsky, A. V. (2002). Modified water pinch method for designing resource-efficient chemical engineering systems. Doklady Chemistry, vol. 383, № 4–6, pp. 123–127.
18. Alva-Argáez, A., Kokossis, A. C., Smith, R. (2007). The design of water-using systems in petroleum refining using a water-pinch decomposition. Chemical Engineering Journal, vol. 128, № 1, pp. 33–46.
19. Khezri, S. M., Lotfi, F., Erfani, Z., Tabibian, S. (2010). Application of water pinch technology for water and wastewater minimization in aluminum anodizing industries. International Journal of Environmental Science and Technology, vol. 7, № 2, pp. 281–290.
20. Zhao, H., Zhong, H., Sun, L., Xia, D., Nevsky, A. V. (2018). Acid Orange 52 dye degradation efficiency by electrocatalytic method. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., vol. 61, № 3, pp. 64–69.
21. Zhao, H., Zhong, H., Sun, L., Xia, D., Nevsky, A. V. (2018). Acid Orange 52 dye degradation by electrocatalytic plus photocatalytic technique and intermediates detection. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya khimicheskaya tekhnologiya, vol. 61, № 4–5. pp. 111–118.
22. Vatagin, V. S., Nevsky, A. V. (2008). Ocenka riska avarijnyh situacij na himicheskih predpriyatiyah s pomoshch’yu metoda “dereva sobytij” [Risk assessment of accidents at industrial plants with the use of “Tree of events” method]. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya khimicheskaya tekhnologiya, vol. 51, № 2, pp. 101–104. (in Russian).
23. Nevsky, A. V., Xia, D., Sun, L., Zhao, H. (2016). Advanced oxidation processes in industry and risk assessment. Invited Report. In: XX Mendeleev Congress on General and Applied Chemistry, Ekaterinburg LLC JiLime PH, vol. 3, pp. 273.

ECOLOGY

Aleksandrova M. A., Vasiliev A. M., Kartashov M. V.ESTIMATION OF MARINE ECOSYSTEM SERVICES BASED ON THE MAIN COMMERCIAL BIORESOURCES AS A BASIS FOR THE SUSTAINABLE STATUS OF THE LARGE MARINE ECOSYSTEM AND BIODIVERSITY CONSERVATION
DOI: 10.23968/2305–3488.2018.20.2.70–86

Introduction: ecosystem services can be defined as the benefits that humans obtain from ecosystems. Marine ecosystem services contribute to the prevention of such global environmental problems as climate change, ensure biodiversity conservation, etc. One of the important reasons for the degradation of marine ecosystems is the underestimation of their real economic value. Methods and materials: the developed method for the evaluation of marine ecosystem services substantiates the feasibility of using the costs of aquatic bioresources sold in auctions for the evaluation of ecosystem services of seas and oceans. It is proposed to use the auction price of the main fishing target (in this case, cod) as a benchmark price for the analysis of ecosystem services in fisheries. The costs of other aquatic organisms are differentiated by the relation of wholesale prices for fish products. Results: the studies conducted have shown that in 2016 the ecosystem of the Barents Sea and adjacent waters produced 1,475 thousand tons of provisioning services worth a total of USD 1,568.6 mln (RUB 61,709 mln). The share of Russia amounted to 610.4 thousand tons worth USD 666.2 mln (RUB 26,066.8 mln) which constitute 42% of the total volume of services. Supporting marine services were estimated at 22,667 thousand tons (according to Norwegian data: 25,958 thousand tons) by volume and at USD 22,827 mln (RUB 898,034 mln) and USD 24,251 mln (RUB 954,038 mln) at value, respectively, which is 14.5 times and 15.5 times higher than the cost of provisioning services. Conclusion: the analysis of the marine ecosystem services’ evaluation by foreign and domestic researchers shows that this process requires further research and improvement of methods.
Key words: marine ecosystems, services, ecosystem approach, precautionary approach, fishing stock, spawning stock, foreign and Russian experience, the Barents Sea and adjacent waters, commercial bioresources, assessment, biodiversity.
References:
1. Aleksandrova, M. A. (2014). Morskie bioresursy v sisteme racional’nogo prirodopol’zovaniya: problemy, puti resheniya [Marine bioresources in the system of rational nature management: problems and solutions]. In: Mezhdunarodnaya nauchno-prakticheskaya konferenciya “Sovremennye problemy i tendencii innovacionnogo razvitiya Evropejskogo Severa”. Murmansk, Izd-vo MGTU, pp. 55–59. (in Russian).
2. Aleksandrova, M. A. (2015). Ekosistemnyj podhod i ego rol’ v upravlenii racional’nym pol’zovaniem vodnymi biologicheskimi resursami [Ecosystem approach and its role in the management of rational use of aquatic biological resources]. In: Statistika i vyzovy sovremennosti. Moskva: MEHSI, pp. 93–99. (in Russian).
3. Aleksandrova, M. A. (2015). Ekologicheskie problemy promysla i bioehkonomicheskie puti ih resheniya [Ecological problems of fishery and bioeconomic ways of their solution]. In: Innovacionnye tekhnologii v nauke i obrazovanii. Cheboksary: CNS «Interaktiv plyus», pp. 292–293. (in Russian).
4. Aleksandrova, M. A. (2015). K voprosu o potencial’noj stoimosti ehkosistemnyh uslug Barenceva morya na baze osnovnyh promyslovyh bioresursov. In: Sovremennye organizacionno-ehkonomicheskie tendencii i problemy razvitiya Evropejskogo Severa, Murmansk: MGTU, pp. 7–12. (in Russian).
5. Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press, 137 с.

6. Food and Agriculture Organization of the United Nations (1995). Code of Conduct for Responsible Fisheries [online]. Available at: http://www.fao.org/fishery/code/en [accessed on 15.12.16].
7. Costanza, R., Groot, R., Sutton, P. (2014). Changes in the global value of ecosystem services. Global Environmental Change, vol. 26, pp. 152–158.
8. Costanza, R. (2001). Visions, values, valuation and the need for an ecological economics. BioScience, vol. 51, pp. 459–468.
9. Costanza, R. (2008). Ecosystem services: Multiple classification systems are needed. Biological Conservation, vol. 141, pp. 350–352.
10. Costanza, R., d’Arge, R., de Groot, R. (1997). The value of the world’s ecosystem services and natural capital. Nature, vol. 387, pp. 253–260.
11. Aleksandrova, M. A. (2016). Ocenka prirodnogo kapitala kak put’ k kompleksnomu upravleniyu prirodopol’zovaniya [Estimation of natural capital as a way to integrated management of nature use]. Ekonomika i predprinimatel’stvo, № 10 (part 3), pp. 1052–1056 (in Russian).
12. Bobylev, S. N., Zaharov, V. M. (2009). Ekosistemnye uslugi i ehkonomika [Ecosystem services and economics]. M.: OOO «Tipografiya LEVKO», Institut ustojchivogo razvitiya/ Centr ehkologicheskoj politiki Rossii, 72 p. (in Russian).
13. Bobylev, S. N. (2002). Podmoskovnye pozhary i Johannesburg (ekologiya krepnet ehkonomicheskimi zakonami) [Near Moscow fires and Johannesburg (ecology is strengthened by economic laws)]. [online] Pozhary v Rossii. Available at: http://www.inauka.ru/catalogue/article32421 [data obrashcheniya 18.10.16]. (in Russian).
14. Bobylev, S. N. (2004). Ekosistemnye uslugi i ehkologo-ehkonomicheskij mekhanizm ih kompensacii regionam [Ecosystem services and ecological and economic mechanism of their compensation to regions]. Agrarnaya Rossiya, № 4, pp. 36–40. (in Russian).
15. Magnussen, K., Kettunen, M. (2013). TEEB Nordic Case: Marine Ecosystem Services in the Barents Sea and Lofoten Islands, A Scoping Assessment. [online]. Available at: http://doc.teebweb.org/wp-content/uploads/2013/01/TEEB-case_TEEBNordic_Marine-ecosystem-services_Barents-Sea-and-Lofoten-Islands.pdf [accessed on 05.12.16].
16. Mangos, A., Bassino, J-P., Sauzade, D. (2010). The Economic Value of Sustainable Benefits Rendered by the Mediterranean Marine Ecosystems. Valbonne: Plan Bleu, 78 p.
17. UNEP (2006). Marine and coastal ecosystems and human well-being: A synthesis report based on the findings of the Millennium Ecosystem Assessment. UNEP, 76 p.
18. Naber, H., Lange, G-M., Hatziolos, M. (2008). Valuation of Marine Ecosystem Services: A Gap Analysis [online]. Available at: https://www.cbd.int/marine/voluntary-reports/vr-mc-wb-en.pdf [accessed on 16.05.2013].
19. UK National Ecosystem Assessment (2011). The UK National Ecosystem Assessment Technical Report. Cambridge: UNEP-WCMC, 1466 p.
20. Shirkova, E. E., Shirkov, E. I., D’yakov, M. Yu. (2014). Prirodno-resursnyj potencial Kamchatki, ego ocenka i problemy ispol’zovaniya v dolgosrochnoj perspektive [Natural and resource potential of Kamchatka, its assessment and problems of long-term use]. Issledovaniya vodnyh biologicheskih resursov Kamchatki i severo-zapadnoj chasti Tihogo okeana, vol. 35, pp. 5–21. (in Russian).
21. Luk’yanova, O. N., Volvenko, I. V., Ogorodnikova, A. A., Anferova, E. N. (2016). Ocenka stoimosti bioresursov i ehkosistemnyh uslug Ohotskogo morya [Estimation of the cost of bioresources and ecosystem services of the Sea of khotsk]. Izvestiya TINRO, vol. 184, pp. 85–92. (in Russian).
22. Sinyakov, S. A. (2006). Rybnaya promyshlennost’ i promysel lososej v sravnenii s drugimi otraslyami ehkonomiki v regionah Dal’nego Vostoka [Fishing industry and salmon fishing in comparison with other branches of the economy in the Far East regions]. Petropavlovsk-Kamchatskij: KamchatNIRO, Kamchatskaya liga nezavisimyh ehkspertov, 64 p. (in Russian).
23. Titova, G. D. (2007). Bioehkonomicheskie problemy rybolovstva v zonah nacional’noj yurisdikcii [Bioeconomic problems of fishing in zones of national jurisdiction]. SPb.: VVM, 386 p. (in Russian).
24. Titova, G. D. (2014). Ocenka uslug morskih ehkosistem kak kompleksnaya mezhdisciplinarnaya problema: na puti k resheniyu [Assessment of marine ecosystem services as a complex interdisciplinary problem: on the way to solution]. Vestnik SPbGU. Seriya 7. Geologiya. Geografiya, vol. 3, pp. 46–56. (in Russian).
25. TEEB (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB, 36 p.
26. Vasil’ev, A. M. (2007). Nalogooblozhenie v rybnoj otrasli [Taxation in the fishing industry]. Federalizm, № 2, pp. 141–154. (in Russian).
27. Gosudarstvennyj nauchno-issledovatel’skij institut sistemnogo analiza Schetnoj palaty Rossijskoj Federacii (2007). Ob osnovnyh napravleniyah nalogovoj politiki na 2007–2009 gody [On the main directions of the tax policy for 2007–2009] [online]. Available at: http://www.niisp.ru/News/Events/art80 [accessed on 16.05.2013].
28. Schetnaya palata RF (2005). Otchet o rezul’tatah proverki v Federal’nom agentstve po rybolovstvu, Kamchatskoj i Magadanskoj oblastyah, Koryakskom i CHukotskom avtonomnyh okrugah ehffektivnosti ispol’zovaniya kvot na vylov (dobychu) vodnyh biologicheskih resursov, raspredelennyh mezhdu pol’zovatelyami v sootvetstvii s postanovleniem Pravitel’stva Rossijskoj Federacii ot 20 noyabrya 2003 goda № 704, vliyaniya obosnovannosti ih raspredeleniya na polnotu finansovyh postuplenij v dohodnuyu chast’ federal’nogo i regional’nyh byudzhetov v 2004 godu, a takzhe na finansovo-ehkonomicheskoe sostoyanie rybohozyajstvennyh organizacij [Report on the effectiveness of the use of quotas for the catch (extraction) of aquatic biological resources distributed among users in the Federal Agency for Fisheries, Kamchatka and Magadan Regions, the Koryak and Chukotka Autonomous Okrugs in accordance with Resolution No. 704 of the Government of the Russian Federation of November 20, 2003, The influence of the reasonableness of their distribution on the completeness of financial receipts in the revenue part of the federal and regional budgets in 2004, as well as on the financial and economic state Fisheries Organizations]. Byulleten’ Schetnoj palaty RF №12 (96) 2005 g. [online]. Available at: http://www.ach.gov.ru/ru/ bulletin/155/ [accessed on 16.05.2013]. (in Russian).
29. Shamraj, E. A. (ed.) (2015). Sostoyanie syr’evyh biologicheskih resursov Barenceva morya i Severnoj Atlantiki v 2015 g. [State of the raw biological resources of the Barents Sea and the North Atlantic in 2015]. Murmansk: PINRO, 96 p.
30. ICES (2016). Report of the Arctic Fisheries Working Group (AFWG). [online]. Available at: http://www.ices.dk/ sites/pub/Publication%20Reports/Expert%20Group%20Report/ acom/2016/AFWG/01%20AFWG%20Report%202016.pdf [accessed on 15.12.16]. (in Russian).
31. Matishov, G. G., Denisov, V. V., Dzhenyuk, S. L., Makarevich, P. R. (2011). Bol’shie morskie ehkosistemy shel’fovyh morej rossijskoj Arktiki [Large marine ecosystems of the shelf seas of the Russian Arctic]. In: Nazemnye i morskie ehkosistemy, Moskva, Sankt-Peterburg: OOO «Paulsen», pp. 71–97. (in Russian).
32. Matishov, G. G., Denisov, V. V., Zhichkin, A. P., Moiseev D. V. (2011). Sovremennye klimaticheskie tendencii v Barencevom more [Current climatic trends in the Barents Sea]. Doklady Akademii nauk, vol. 441, № 3, pp. 395–398. (in Russian).
33. Sherman, K., Alexander, L.M. (ed). (1989). Biomass Yields Geography of Large Marine Ecosistems. Boulder: West View Press, 493 p.
34. Kanu, E. J., Tyonum, E. T., Uchegbu, S. N. (2018). Public participation in environmental impact assessment (EIA): a critical analysis. Architecture and Engineering, vol. 3 (1), pp. 7–12. DOI: 10.23968/2500-0055-2018-3-1-7-12

Sukiasyan A. R., Pirumyan G. P.IMPACT OF HEAVY METALS CONTENT IN WATER AND SOIL ON THE ECOLOGICAL STRESS OF PLANTS IN DIFFERENT CLIMATIC ZONES OF THE REPUBLIC OF ARMENIA
DOI: 10.23968/2305–3488.2018.20.2.87–94

Introduction: the migration features of a number of heavy metals in the water-soil-plant triad are studied using the example of the Debit and Araks River Basin. Analysis of river water, coastal soil and an annual plant (Maize Zea) was performed. Methods and materials: in the experiments, the maize samples differed in the main distribution area, in the different geochemical distinct regions of Armenia, and as a control plant — the inbred maize line B73. The modeling of drought was carried out by changing the relative humidity of the soil by the irrigation regime. In the case of a moderate drought, it was 43%, with no visible wilting of the leaves of the plant, during severe drought modeling — 34%, wilting was observed during the day. The content of heavy metals was carried out using a portable analyzer Thermo Scientific™ Niton™ XRF Portable Analyzer. Results: a certain spatial dynamics of the distribution of chemical elements has been revealed. It is shown that coastal soil acts as a natural filter when using anthropogenically polluted river water, which is an almost active source of distribution of hazardous microelements in the regions examined. Since the basic carrier of those elements in plants is water, the physiological response of plants differing in the region of plant growth which various degrees to drought stress was considered. In most points of observations (The River Debet — Odzun, Shnokh and Teghut) the level of heavy metals in drought conditions was in certain correlation dependence. Under the influence of the intensified drought (The River Araks — Hushakert), the growth of plants was inhibited against the background of an increased content of trace elements. Conclusion: the obtained results allow to accomplish a complex of measures for monitoring the level of pollution of river water, which is used for irrigation purposes.
Key words: river water, pollution, heavy metal, water quality, ecology.
References:
1. Barceló, J., Poschenrieder, Ch. (1990). Plant water relations as affected by heavy metal stress. A review. Journal of Plant Nutrition, vol. 13, № 1, pp.1–37.
2. Dalvi, A., Bhalerao, S. A. (2013). Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Annals of Plant Sciences, vol. 2, № 9, pp. 362–368.
3. Feleafel, M. N., Mirdad, Z. M., Hassan, A. Sh. (2014). Effecte of NPK Fertigation Rate and Starter Fertilizer on the Growth and Yield of Cucumber Grown in Greenhouse. Journal of Agricultural Science, vol. 6, № 9, pp. 81–92.
4. Flora, S. J. S., Mittal, M., Mehta, A. (2008). Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian Journal of Medical Research, vol. 128, № 4, pp. 501–523.
5. Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, vol. 53, № 366, pp. 1–11.
6. Hossain, M. A., Piyatida, P., da Silva, J. A. T., Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, vol. 2012, pp.1–37.
7. Khan, H., Ali, E., Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, vol. 91, № 7, pp. 869–881.
8. Levitt, J. (1972). Responses of Plants to Environmental Stresses. New York: Academic Press, 698 p.
9. Furini, A. (ed.) (2012). Plants and Heavy Metals. Dordrecht: Springer, 86 p. 10. McMullen, M. D. (2009). Genetic Properties of the Maize Nested Association Mapping Population. Science, vol. 325 (737), pp. 737–740.
11. Moussa, H. R., Abdel-Aziz, S. M. (2008). Comparative response of drought tolerant and drought sensitive maize genotypesto water stress. Australian Journal of Crop Science, vol. 1, pp. 31–36.
12. Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, vol. 8, № 3, pp. 199–216.
13. Omae, N., Kumar, A., Egawa, Y. (2005). Midday Drop of Leaf Water Content Related to Drought Tolerance in Snap Bean (Phaseolus vulgaris L.). Plant Production Science, vol. 8, № 4, pp. 465–467.
14. Patra, M., Bhowmik, N., Bandopadhyay, B., Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, vol. 52, № 3, pp. 199–223.
15. Rascio, N., Navari-Izzo, F. (2011). Heavy metal hyper accumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, vol. 180, № 2, pp. 169–181.
16. Rucinska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant, vol. 38, pp. 257–269.
17. Schutzendube, L. А., Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection bymycorrhization. The Journal of Experimental Botany, vol. 53, № 372, pp. 1351–1365.
18. Seregin, I. V, Ivanov, V. B. (2001). Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants. Russian Journal of Plant Physiology, vol. 48, № 4, pp. 523–544.
19. Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G. (2004). Root growth maintenance during water deficits: physiology tofunction algenomics. Journal of Experimental Botany, vol. 55, pp. 2343–2351.
20. Solanki, R., Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia, vol. 66, № 2, pp. 195–204.
21. Sukiasyan, A., Kirakosyan, A., Tadevosyan, A., Aslikyan, M., Gharajyan K. (2017). Peculiarities of accumulation of some heavy metals on the chain of water-soil-plant. International Journal of Advanced Engineering and Management Research, vol. 2, № 5. pp. 1534–1541.
22. Sukiasyan, A. R. (2016). Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations. International Journal of Environmental and Ecological Engineering, vol. 8, № 3, pp. 846–849.
23. Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, vol. 2011, pp. 1–32.
24. Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stoláriková, M., Lux, A. (2012). Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, vol. 110, № 2, pp. 433–443.
25. Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, vol. 55, № 35, pp. 1–12.
26. Wuana, R. A., Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, vol. 2011, pp. 1–21.
27. Zengin, F. K., Munzuroglu, O. (2005). Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica, vol. 47, № 2, pp. 157–164.
28. Kabata-Pendias, A., Pendias, H. (1989). Mikroehlementy v pochvah i rasteniyah [Microelements in soils and plants]. M.: «Mir», 440 p. (in Russian).
29. Kirakosyan, A. A., Sukiasyan, A. R. (2005). Ispol’zovanie yazyka MATLAB v kachestve ekspress-metoda ocenki ehksperimental’nyh rezul’tatov [Using the MATLAB language as an express method for evaluating experimental results]. In: Informacionnye tekhnologii. Erevan, pp. 34–37. (in Russian).
30. Sukiasyan, A. R., Tadevosyan, A. V., Pirumyan, G. P. (2016). Migraciya ryada tyazhelyh metallov v sisteme pochva– rastenie na fone processov vodopogloshcheniya v rastenii [Migration of a number of heavy metals in the soil–plant system against the background of water absorption processes in the plant]. Estestvennye i tekhnicheskie nauki, № 3, pp. 32–34. (in Russian).
31. Titov, A. F., Talanova, V. V., Kaznina, N. M., Lajdinen, G. F. (2007). Ustojchivost’ rastenij k tyazhelym metallam [Plant resistance to heavy metals]. Petrozavodsk: Karel’skij nauchnyj centr RAN, 172 p. (in Russian).

№3

WATERDISPOSAL

Adeeva L. N., Didenko T. A., Platonova D. S.SORPTION EXTRACTION OF HUMIC ACIDS FROM AQUEOUS SOLUTIONS
DOI: 10.23968/2305–3488.2018.20.3.3–8

Introduction: the article is devoted to studying a possibily of extracting humic acids from aqueous solutions using sorption method. Methods and materials: Purolite A830W gel anion-exchange substance, a microporous low-basic anionic-ion exchanger with polyamines as functional groups and carbon-mineral sorbent produced by carbonization of organic slime and modified by means of polyhexamethyleneguanidine has been used as sorbent. Medicinal product Biopag-B corresponding to 20%-solution of polyhexamethyleneguanidine chloride has been used for modification. The surface of carbon-mineral sorbent acquires anionic-ion exchange properties as a result of application of polyhexamethyleneguanidine comprising amine groups to the surface. In order to study sorption processes, solutions of humic acids extracted from native organic slime have been prepared. Results: optimal conditions for sorption of humic acids under static conditions have been established. It has been demonstrated that the most complete extraction of humic acids is observed at рН = 7.0 ± 0.1. The value of static exchange capacity has been determined being 0.13 ± 0.01 mg/g for resin Purolite А 830W and 0.066 ± 0.003 mg/g for modified carbon-mineral sorbent. A degree of extraction of humic acids for anion-exchange substance and modified sorbent amounted to 88 % and 97 %, accordingly. The experimental kinetic curves have been processed following Boyd-Adamson method. It has been established that pore-diffusion stage of humic acids absorption in both sorbents is the limiting stage. Diffusion coefficients of 5.5∙10-12 m2/s for resin Purolite A830W and 5.8∙10-12 m2/s for modified carbon-mineral sorbent have been obtained. Conclusion: thus, both anion-exchange substance Purolite A830 W and carbon-mineral sorbent modified with polyhexamethyleneguanidine can be used for extraction of humic acids from water. The modified carbon-mineral sorbent is comparable with anion-exchange substance Purolite A 830 W with respect to efficiency and can be recommended for preliminary removal of humic acids from water before ion-exchange purification. The extraction of humic acids by means of modified carbon-mineral sorbent will help avoid decontamination of costly synthetic ion-exchange resins with humic acids reducing the exchange capacity thereof and increasing water consumption for regeneration of ion-exchange resins.
Key words: sorption of humic acids, anion exchanger, the modified carbon-mineral sorbent, kinetic properties.
References: 1. Goncharuk, B. B., Strahov, B. E., Voloshinova, A. M. (1996). Ekspluatacionnaya nadezhnost' oborudovaniya ehlektrostancij v zavisimosti ot organicheskih primesej v tekhnologicheskih vodnyh sredah [Operational reliability of equipment of power plants depending on organic admixtures in process aqueous media]. Himiya i tekhnologiya vody, vol. 18, № 2, pp. 162–166. (in Russian).
2. Martynova, O. I., Kopylov, A. C., Mamet, B. A. (1975). Obratnyj osmos — novyj ehffektivnyj metod obrabotki dobavochnyh i stochnyh vod na ehlektrostanciyah [Reverse osmosis is a new efficient method of treatment of make-up water and waste water at power plants]. Teploehnergetika, № 7, pp. 87–89. (in Russian).
3. Slavinskaya, G. V. (2003). Ochistka prirodnyh vod ot gumusovyh veshchestv sochetaniem anionitov i aktivnyh uglej [Cleaning natural water of humic substance using a combination of anion-exchange substances and activated carbons]. Sorbcionnye i hromatograficheskie processy, vol. 3, issue 3, pp. 286–292. (in Russian).
4. Glyancev, N. I., Kotov, V. V., Stekolnikova, I. M. (2006). Sorbcionnye svojstva nekotoryh anionitov i uglej pri ochistke vody ot organicheskih veshchestv [Sorption properties of some anion-exchange substances and carbons in the course of cleaning water of organic substances]. Sorbcionnye i hromatograficheskie processy, vol. 6, № 2, pp. 302–306. (in Russian).
5. Slavinskaya, G. V., Selemenev, V. F. (2007). Organicheskie veshchestva kak faktor, oslozhnyayushchij kondicionirovanie vody promyshlennogo i pit'evogo naznacheniya [Organic substances as a factor complicating conditioning of service water and drinking water]. Sorbcionnye i hromatograficheskie processy, vol. 7, issue 2, pp. 297–302. (in Russian).
6. Losev, V. N., Diduh, S. L., Bujko, E. V. (2009). Primenenie kremnezema, modificirovannogo poligeksametilenguanidinom i 8-oksihinolin-5-sul'fokislotoj, dlya koncentrirovaniya i sorbcionno-atomno-ehmissionnogo opredeleniya metallov v prirodnyh vodah [Application of silicon oxide modified with polyhexamethyleneguanidine and 8-hydroxyquinoline -5-sulphoacid for concentration and absorption-atomic-emission identification of metals in natural water]. Analitika i kontrol', vol. 13, № 1, pp. 33–39. (in Russian).
7. Adeeva, L. N., Platonova, D. S., Masorov, M. S., Didenko, T. A. (2013). Guminovye kisloty iz kremnezemistogo sapropelya: IK-spektroskopicheskij i termicheskij analiz [Humic acids from silicon-oxide organic slime: IR-spectroscopic and thermal analysis]. Butlerovskie soobshcheniya, vol. 34, № 6, pp. 65–69. (in Russian).
8. Platonova, D. S., Adeeva, L. N. (2015). Himicheskij sostav i kislotno-osnovnye svojstva guminovyh kislot, vydelennyh iz sapropelya Omskoj oblasti [Chemical composition and acid-base properties of humic acids emitted from organic slime of Omsk region]. Izvestiya Vysshih uchebnyh zavedenij. Seriya: Himiya i himicheskaya tekhnologiya, vol. 58, № 8, pp. 35–38. (in Russian).
9. Platonova, D. S., Didenko, T. A., Adeeva, L. N. (2014). Issledovanie sostava guminovyh kislot iz sapropelya [Investigating composition of humic acids from organic slime]. Vestnik Omskogo universiteta, № 2, pp. 87–89. (in Russian).
10. Platonova, D., Didenko, T., Adeeva, L. (2013). Some characteristics of the humic acids emitted from sapropel of Omsk region. In: Applied nanotechnology and nanotoxicology: second international school-conference, Listvyanka, pp. 146–147.
11. Macroporous Weak Base Anion Exchange Resin Purolite A830 (2011). Official product data information. [online] Available at: https://www.purolite.com/product/a830 [accessed on 12.09.2018].
12. Adeeva, L. N., Kovalenko, T. A. (2011). Sposob kompleksnoj ochistki stochnyh vod uglerodmineral'nym sorbentom iz sapropelya [Method of integrated waste water treatment using carbon-mineral absorbent from organic slime]. Patent № 2414430. (in Russian).
13. Kovalenko, T. A., Adeeva, L. N. (2010). Uglerodmineral'nyj sorbent iz sapropelya dlya kompleksnoj ochistki stochnyh vod [Carbon-mineral absorbent from organic slime for integrated waste water treatment]. Himiya v interesah ustojchivogo razvitiya, vol. 18, № 2, pp. 189–195. (in Russian).
14. Adeeva, L. N., Kovalenko, T. A. (2012). Ochistka vody ot organicheskih veshchestv i ionov metallov uglerodmineral'nym sorbentom iz sapropelya [Water cleaning from organic substances and ions of metals using carbon-mineral absorbent from organic slime]. Zhurnal prikladnoj himii, vol. 85, № 4, pp. 535–541.
15. Platonova, D. S., Gurin, A. V., Adeeva, L. N. (2016). Modificirovannye sorbenty iz sapropelya dlya ochistki stochnyh vod [Modified absorbents from organic slime for waste water treatment]. Ekologiya i promyshlennost' Rossii, vol. 20, № 11, pp. 20–25. (in Russian).
16. Adeeva, L. N., Didenko, T. A., Platonova, D. S. (2016). Primenenie uglerodmineral'nogo sorbenta v reagentno-sorbcionnoj skheme ochistki podzemnoj vody [Application of carbon-mineral absorbent in reagent-absorption flow diagram of subterranean water treatment]. Voda: himiya i ehkologiya, № 11, pp. 66–71. (in Russian).
17. Gavrilenko, M. A., Vetrova, O. V. (2010). Sposob polucheniya sorbenta dlya ochistki vody ot organicheskih veshchestv [Method of producing absorbent for cleaning water of organic substances]. Patent № 2404850. (in Russian).
18. Gosstandart Rossii (1997). GOST 9517-94. Toplivo tverdoe. Metody opredeleniya vyhoda guminovyh kislot [Solid fuel. Methods of identifying yield of humic acids]. M.: IPK Izdatel'stvo standartov, 8 p. (in Russian).
19. Kokotov, Yu. A., Pasechnik, V. A. (1970). Ravnovesie i kinetika ionnogo obmena [Equilibrium and kinetics of ion exchange]. L.: Himiya, 336 p. (in Russian).
20. Polyanskij, N. G., Gorbunov, G. V., Polyanskaya, N. L. (1976). Metody issledovaniya ionitov [Methods of investigating ion-exchange materials]. M.: Himiya, 208 p. (in Russian).

Zubrilov S. P.MICROPOLLUTANTS IN CITY’S DRINKING WATER SUPPLY
DOI: 10.23968/2305–3488.2018.20.3.9–18

Introduction: the article briefly describes the current state of ecosystems. The problem associated with the introduction of micro-pollutants into the environment (including water bodies) is indicated. The main sources of these substances and the types of effects of individual substances on the human body are indicated. Methods and materials: the estimation of modern technologies of wastewater treatment is given, the necessity of their modernization is proved with the purpose of prevention of pollution of the aquatic environment by micro-pollutants. At the same time, the introduction of non-reagent water treatment technologies, in particular ultrasonic, exciting cavitation (cavitation treatment), and ultraviolet irradiation is considered as the main direction of modernization. The issue of the possibility of cavitation treatment for sewage treatment from micro contaminants is considered. Results: the theoretical and practical results of long-term studies of the effect of cavitation on water systems are briefly presented. Examples of the successful introduction of cavitation technologies into the practice of wastewater treatment are given. Conclusion: possible future directions of the development of wastewater treatment technologies are indicated.
Key words: micropollutants, cavitation, spiral camera, refining, wastewater, water bodies.
References: 1. Bryzgalo, V. A., Nikonorov, A. M., Reshetnyak, O. S. (2013). Izmenchivost' ehkologicheskogo sostoyaniya rechnyh zon ust'evyh ehkosistem krupnyh rek Rossii [Variability of ecological state of river zones of estuarial ecological systems of big rivers of Russia]. Voda: himiya i ehkologiya, № 12, pp. 15–21. (in Russian).
2. Rosgidromet (2006). RD 52.24.661—2004. Rekomendacii po ocenke riska antropogennogo vozdejstviya prioritetnyh zagryaznyayushchih veshchestv na poverhnostnye vody sushi [Recommendations on assessing risk of human-induced impact of priority contaminants on surface waters of dry land]. M.: Meteoagenstvo Rosgidrometa, 22 p. (in Russian).
3. Elpiner, L. I. (2009). Vliyanie vodnogo faktora na formirovanie zdorov'ya cheloveka [Influence of aqueous factor on human health formation]. Voda: himiya i ehkologiya, № 3, pp. 6–10. (in Russian).
4. Elpiner, L. I. (1983). Problemy pit'evogo vodosnabzheniya v SSHA [Problems of potable water supply in the USA]. M.: Nauka, 168 p. (in Russian).
5. Elpiner, L. I., Bejm, V. M. (1982). Ekologicheskie aspekty sovremennoj gigieny vody [Environmental aspects of present-day water hygiene]. Vodnye resursy, № 2, pp. 3–19. (in Russian).
6. Chernikov, N. A., Begunov, P. P., Dyuba K. M. (2012) Eshche raz k voprosu o zakonodatel'noj baze v oblasti vodosnabzheniya i vodootvedeniya [Revisiting regulatory framework once again in the field of water supply and water removal.].Water and Ecology, № 2–3, pp. 6–12. (in Russian).
7. Rahmanin, Yu. A. (red.) (2011). Itogi i perspektivy nauchnyh issledovanij po problemam ehkologii cheloveka i gigieny okruzhayushchej sredy [Final results and prospects of scientific investigations on problems of human ecology and hygiene of environment]. M.: Centr strategicheskogo planirovaniya, 280 p. (in Russian).
8. Bagrov, V. V., Grafov, D. R., Desyatov, A. V. (2013). Vozmozhnost' intensifikacii okislitel'no-vostanovitel'nyh processov pri ochistke vody za schet ispol'zovaniya ehffekta kavitacii [Possibility of intensifying oxidation and reduction processes during water treatment due to use of cavitation effect]. Voda: himiya i ehkologiya, № 12, pp. 35–37. (in Russian).
9. Batoeva, A. N., Aseev, D. G., Sizyh, M. R., Handarhaeva, M. S. (2011) Perspektivy primeneniya nizko-napornoj gidrodinamicheskoj kavitacii v processah ochistki stochnyh vod [Prospects of using low-pressure hydrodynamic cavitation in the processes of waste water treatment]. Voda: himiya i ehkologiya, № 9, pp. 27–31. (in Russian).
10. Ul'yanov, A. N. (2009). Tekhnologiya lazur' – novyj shag v obezzarazhivanii vody i stokov [Sky-blue technology is a new step in decontamination of water and drains.]. Voda: himiya i ehkologiya, № 3, pp. 11–15. (in Russian).
11. Zubrilov, S. P. (1989). Fizicheskaya aktivaciya rastvorov [Physical activation of solutions.]. L.: Vneshtorgizdat, 187 p. (in Russian).
12. Margulis, M. A. (1984). Osnovy zvukohimii: himicheskie reakcii v akusticheskih polyah [Fundamentals of sonochemistry: chemical reactions in acoustic fields]. M. Vysshaya shkola, 272 p. (in Russian).
13. Zubrilov, S. P. (2008) Fiziko-himicheskie svojstva vody i prikladnye aspekty gidrodinamicheskoj kavitacii [Physical and chemical properties of water and applied aspects of hydrodynamic cavitation]. SPb.: SPGUVK, 111 p. (in Russian).
14. Ivchenko, V. M., Kulagin, V. A., Nemchin, A. F. (1990). Kavitacionnaya tekhnologiya [Cavitation technology]. Krasnoyarsk: KGU, 200 p. (in Russian).
15. Zubrilov, S. P., Seliverstov, V. M., Braslavskij, M. I., Filippov, A. N. (1983). Generator kavitacii [Cavitation generator]. Patent № 1233578. (in Russian).
16. Zubrilov, S. P. (1993). Ochistka organo-metallosoderzhashchih stochnyh vod na zavodah peredvizhnymi ustanovkami po bezreagentnym tekhnologiyam [Treatment of organics- and metal-containing waste at the factories using mobile plants according to reagentless technologies]. SPb.: SPGUVK, 78 p. (in Russian).
17. Rastrygin, N. V. (1997). Primenenie v sudovoj ehnergeticheskoj ustanovke ul'trazvukovoj kavitacii dlya ochistki neftesoderzhashchih vod [Application of ultrasound cavitation in ship power plant for treatment of petroliferous water]. kand. tekhn. nauk. Sankt-Peterburg. (in Russian).
18. Zubrilov, S. P., Seliverstov, V. M., Braslavskij, M. I. (1989). Ul'trazvukovaya kavitacionnaya obrabotka topliv na sudah [Ultrasound cavitation treatment of fuel at the ships]. L.: Sudostroenie, 80 p. (in Russian).
19. Zubrilov, S. P., Zubrilov, A. S. (1997). Sposob ochistki zagryaznennyh vod [Method of treatment of contaminated water]. Patent № 2078048. (in Russian).
20. Sirotyuk, M. G. (1970). Stabilizaciya gazovyh puzyr'kov v vode [Stabilization of gas bubbles in water]. Akusticheskij zhurnal, vol. 16, issue. 2, pp. 286-290. (in Russian).
21. Sirotyuk, M. G. (2008). Akusticheskaya kavitaciya [Acoustic cavitation]. M.: Nauka, 271 p. (in Russian).
22. Kulagin, V. A. (2004). Metody i sredstva tekhnologicheskoj obrabotki mnogokomponentnyh sred s ispol'zovaniem ehffektov kavitacii [Methods and techniques of process treatment of multi-component media with the use of cavitation effects]. d-r. tekhn. nauk. Krasnoyarsk. (in Russian).
23. Krivoluckij, A. S. (2007). Povyshenie ehffektivnosti raboty teplovyh setej za schet kavitacionnoj obrabotki vody [Enhancement of efficiency of heat networks functioning due to cavitation water treatment]. kand tekhn. nauk. Krasnoyarsk. (in Russian).
24. Evstigneev, V. V. (2012). Sovershenstvovanie tekhnologii kondicionirovaniya stochnyh vod ehnergeticheskih sistem i kompleksov [Improvement in techniques of conditioning waste water of power-generation systems and complexes]. kand. tekhn. nauk. Krasnoyarsk. (in Russian).
25. Shiyan, L. N. (2004). Himiya vody i vodopodgotovka [Chemistry of water and water conditioning and purification]. Tomsk: TPU, 72 p. (in Russian).
26. Vsemirnaya organizaciya zdravoohraneniya (2011). Farmacevticheskie sredstva v pit'evoj vode [Pharmaceutical means in potable water]. [online] Available at: http://www.who.int/water_sanitation_health/emerging/info_sheet_pharmaceuticals/ru/ [accessed on 09.01.2018]
27. Barenbojm, G. M., Chiganova, M. A. (2015). Zagryaznenie prirodnyh vod lekarstvami [Contamination of natural water with drugs]. M.: Nauka, 285 p. (in Russian).
28. Zubrilov, S. P. (2015). Pit'evaya voda gorodov. Tekhnologii ochistki vod [Potable water for cities. Water treatment techniques]. SPb.: GUMRF, 154 p. (in Russian).
29. Zubrilov, S. P,. Potapov, I. O., Yakovlev, A. V. (2017). Kompleksnoe ispol'zovanie vodnyh ob`ektov [Complex use of water bodies]. SPb.: GUMRF, 136 p. (in Russian).

Koida A. N.REPLACEMENT OF THE EQUIPMENT IN COMPLEX WATER SUPPLY SYSTEMS
DOI: 10.23968/2305–3488.2018.20.3.19–23

Introduction: elements of water supply systems have a limited period of normal (serviceable) operation. Proper and reasonable organization of the maintenance of such systems is quite a challenge. The sequence of equipment replacement is significantly influenced by both the cost of replacement equipment purchased, as well as the cost of repairing worn out equipment, and the costs associated with downtime of the equipment itself and the overall system. Methods and materials: to justify the need for competent organization of the process of servicing complex water supply systems, the general algorithmic method of branches and boundaries is used. Results: a mathematical solution is proposed for choosing the optimal algorithm for organizing a sequence of replacing equipment in water supply systems. The strategies of substitutions are considered both after the development of the resource of one unit, and when all the aggregates are replaced simultaneously. Conclusion: the proposed substitution strategy can be used in the planning of repairs (substitutions) in the internal water supply networks of buildings.
Key words: essential condition, service of equipment, water supply systems, downtime of equipment, replacement of machines, strategy of replacements.
References: 1. Korbut, A., Filkelshtein Iu. (1969) Discretnoe programmirovanie [Discrete programming], M.: Nauka, 368 p. (in Russian)
2. Kofman, A. (1975) Vvedenie v prikladnuyu combinatoriku [Introduction to applied combinatorics], M.: Nauka, 408 p. (in Russian)
3. Sigal, I., Ivanova, A. (2002). Vvedenie v prikladnoe dicretnoe programmirovanie: modeli i vychislitelnye algoritmy [Intruduction to discrete programming: models and calculating algorithms]. M.: Fizmatlit, 240 p. (in Russian)
4. Prisypkin, M, Sigal, I. (2005). Issledovanie algoritmov parallelnykh vychislenii v zadachakh discretnoi optimizacii ranzevogo tipa [The study of parallel computing algorithms in problems of discrete optimization knapsack type]. Journal of computational mathematics and physics, vol. 10, № 45, pp. 1801–1809 (in Russian)
5. Prisypkin, M. (2005) Algoritmy parallelnykh vychislenii dlya reshenia nekotorykh klassov zadach discretnoi optimizacii [Algorithms of parallel computations for solving certain classes of problems of discrete optimization]. M.: RAS, 43 p. (in Russian).
6. Soitendeck, G (1963) Metody vozmozhnykh napravlenii [Methods of possibledirections]. M.: Izdatel'stvo inostrannoj literatury, 175 p. (in Russian)
7. Rybashov, M, Dudnikov, E. (1970). Gradientnye metody reshenia lineynikh raventsv, neraventstv i zadach lineinogo programmirovania na AVM [Gradient methods of solving linear equalities, inequalities and linear programming problems using analog computer], M.: Soviet radio, 144 p. (in Russian)
8. Land, A.H., Doig, A.G. (1960). An automatic method of solving discrete programming problems. Econometrica, vol. 28, pp. 497–520.
9. Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C. (1963). An algorithm for the traveling salesman problem. Operations Research, vol. 11, pp. 972–989.
10. Beresnev, V. (1978). Extremalnye zadachi standartizacii [Extremal standardization]. Novosibirsk: Nauka, 336 p. (in Russian)
11. Reyngold, E. (1980) Kombinatornye algoritmi. Teoria i praktika [Combinatorial algorithms, theory and practice], M.: Mir, 478 p. (in Russian)
12. Melamed, I. I., Sergeev, S. I., Sigal, I. H. (1969) Zadacha commivoyazhera. Tochnye algoritmy [The traveling salesman problem. Accurate algorithms]. Automation and remote control, № 10, pp. 3–29. (in Russian)
13. Danzing, J. (1964) Lineinoe programmirovanie, ego primenenie i obobshenia [Linear programming, its application and generalization]. M.: Mir, pp. 202–218.
14. Ioffe, A. D., Tikhomirov, V. M. (1968). Dvoistvennost vypuklykh funkcii i extremalnye zadachi [The duality of convex functions and extremal problems]. Uspekhi matematicheskih nauk, № 6, pp. 51–166. (in Russian).
15. Aksyonova, O. P., Aksyonov, K. A., Popov, M. V., Nevolina, A. L. (2012). Reshenie zadachi zameny oborudovaniya seti svyazi na osnove integracii ob"ektno-orientirovannogo podhoda, ehkspertnyh sistem i derev'ev reshenij [The solution of environment upgrade task of telecommunication network base on integration object-oriented approach, expert systems and decision trees]. Sovremennye problemy nauki i obrazovaniya, № 6. [online] Available on: http://www.science-education.ru/ru/article/view?id=7931 [accessed on: 13.09.2018].
16. Solov'eva, M. H. (2008). Metody ehffektivnogo upravleniya processom zameny oborudovaniya predpriyatiya [Methods for efficient management of the process of replacing equipment]. kand. tekhn. nauk, Moskva.

Kosarev A. V., Atamanova O. V., Tikhomirova E. I., Istrashkina M. V.KINETICS OF ADSORPTION OF 2-METHYLALININE BY MODIFIED BENTONITE AT SEWAGE TREATMENT
DOI: 10.23968/2305–3488.2018.20.3.24–31

Introduction: the urgency of developing problem-solving approaches of wastewater treatment based on the development of technologies based on the use of adsorption processes is growing nowadays. Methods and materials: the article deals with kinetic modeling of 2-methylaniline adsorption on bentonite, modified by surface-active substances. Results: it is found that the efficiency of adsorption was increasing in a series ethylene glycol-glycerol-polyepoxide. A kinetic model has been proposed to define the relationship between pollutant extraction from the water with the kinetic characteristics of the adsorption. This is because diffusion coefficient, dynamic adsorption capacity, adsorbent protection coefficient increases, and half-year period of absorbed capacity decreases. These consistencies are explained by interlayered distance increasing when modifying the adsorbent, decreasing of the adsorbate microenvironment polarity in the structure of the modified adsorbent and increasing the efficiency of the adsorbent and modifier interaction. The limiting capacity of the modified bentonite is increasing in comparison with the unaltered: in 2.1 times when the glycol is modifier; in 2.4 times when the glycerol is modifier; in 3.1 times when the polyepoxide is modifier. Conclusion: the practical significance of the work is that possible with its model to improve the adsorption process of industrial wastewater treatment from aromatic amines with modifying the aluminosilicates adsorbents by low polar surface-active substances.
Key words: adsorption, bentonite, modifiers, kinetics, water treatment efficiency.
References: 1. Anurov, S. A., Anurova, T. V., Seku, B. (2012). Kinetika adsorbcii avtomobil'nyh raskhodnyh zhidkostej iz vodnoj sredy glinistymi materialami [Kinetics of adsorption of vehicular consumable liquids from water medium by means of clayey materials]. Voda: himiya i ehkologiya, № 6, pp. 70–75. (in Russian).
2. Badmaeva, S. V., Hanhasaeva, S. C. (2014). Ocenka ehffektivnosti sorbcii ionov zheleza na bentonitovoj gline Muhortalinskogo mestorozhdeniya [Assessing efficiency of sorption of ions of iron on bentonite clay of Mukhortalinskoye deposit]. Voda: himiya i ehkologiya, № 5, pp. 110–115. (in Russian).
3. Ermakov, D. V., Sviridov, A. V., Ibatulina, YU. R. (2004). Izvlechenie kationov medi (II) s pomoshch'yu kolloidnyh sorbentov [Extraction of cations of copper (II) by means of colloidal sorbents]. Izvestiya Chelyabinskogo nauchnogo centra, № 1 (22), pp. 164–168. (in Russian).
4. Ivanov, V. B. et al. (2014). Adsorbciya i molekulyarnaya dinamika nizkomolekulyarnyh veshchestv na nanochasticah modificirovannogo montmorillonite [Adsorption and molecular dynamics of low-molecular substances on nanoparticles of modified montmorillonite]. Himicheskaya fizika, vol. 33, № 3, pp. 84–91. (in Russian).
5. Karnauhov, A. P. (1999). Adsorbciya. Tekstura dispersnyh i poristyh materialov [Adsorption. Texture of dispersion and porous materials]. Novosibirsk: Nauka, 470 p. (in Russian).
6. Korenman, I. M (1970). Fotometricheskij analiz. Metody opredeleniya organicheskih soedinenij [Photometric analysis. Methods of identification of organic compounds]. M.: Himiya, 343 p. (in Russian).
7. Lanina, T. D. (2009). Primenenie prirodnyh sorbentov dlya ochistki burovyh stochnyh vod [Application of natural sorbents for cleaning of drilling waste water]. Zashchita okruzhayushchej sredy v neftegazovom komplekse, № 9, pp. 55–56. (in Russian).
8. Mikitaev, A. K., Kaladzhyan, A. A., Lednev, O. B. (2004). Nanokompozitnye polimernye materialy na osnove organoglin [Nanocomposite polymer materials based on organic clays]. Plasticheskie massy, № 12, pp. 45–50. (in Russian).
9. Tarasevich, Yu. I., Trifonova, M. Yu., Bondarenko, S. V. (2010). Vzaimodejstvie kristallicheskogo fioletovogo s prirodnymi i modificirovannymi organicheskimi kationami sloistymi silikatami [Interaction of crystalline violet cation with natural and modified organic cations with the use of laminated silicates]. Kolloidnyj zhurnal, vol. 72, № 4, pp. 555–559. (in Russian).
10. Tarasevich, Yu. I., Polyakov, V. E., Trifonova, M. Yu. (2013). Mikrokalorimetricheskoe issledovanie vzaimodejstviya vody s poverhnost'yu kaolinita, modificirovannogo poligeksametilenguanidinom [Microcalorimetric investigation of water interaction with the surface of kaolinite modified with polyhexametylenguanidin]. Kolloidnyj zhurnal, vol. 75, № 1, pp. 123–127. (in Russian).
11. Gullick, R. W., Weber, W. J. (2001). Evaluation of Shale and Organoclays as Sorbent Additives for Low-permeability Soil Containment Barriers. Environmental Science&Technology, vol. 35, issue 7, pp. 1523–1530.
12. Ismadji, S., Soetaredjo, F. E., Ayucitra, A. (2015). Modification of Clay Minerals for Adsorption Purpose. In: Clay Materials for Environmental Remediation, Jaipur, pp. 39–56.
13. Khenifi, A., Bouberka, Z., Sekrane, F. (2007). Adsorption study of an industrial dye by an organic clay. Adsorption, vol. 13, issue 2, pp. 149–158.
14. Ma, J., Xu, H., Ren, J. H. (2003). A new approach to polymer/montmorillonite nanocomposites. Polymer, vol. 44, № 16, pp. 4619–4624.
15. Miyamoto, N. (2000). Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. Applied Clay Science, vol. 16, pp.161–170.
16. Sandy, Maramis, V., Kurniavan, A. (2012). Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Frontiers of Chemical Science and Engineering, vol. 6, issue 1, pp. 58–66.
17. Vaia, R. A., Giannelis, E. P. (1997). Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment. Macromolecules, vol. 30, pp. 8000–8009.

Petevotyan R. A., Karamyan A. S.IMPROVEMENT OF DIVERSION DAM UNIT OPERATION ON MOUNTAIN RIVERS FOR SUPPLY IN SETTLEMENTS
DOI: 10.23968/2305–3488.2018.20.3.32–38

Introduction: in the Republic of Armenia for domestic and drinking water supply in settlements for the most part underground water sources are used which do not require cleaning. In regions where there are no underground water sources or these resources exist in insufficient quantities, mountain rivers are used as a water source. The existing design of intake units' structures, complex operating conditions of water-supply systems using water from mountain rivers, lead to the significant decrease in the quality of water supply. The operation experience of water intake units built on mountain rivers shows that particular qualities, of these rivers are: a large seasonal fluctuation of flow — up to 100 and more times; a large amount of suspended matter in the period of floods — water turbidity up to 10 000 mg/l and more, the content in the water stream bed sediment, fins, sludges, etc. create operational problems. The whole volume of the intake dam reservoir is filled all of a sudden with incoming sediment, preliminary water cleaning structures (sand catchers, sedimentation tanks) are chocked up. The purpose of the study: identification of shortcomings in design solutions of water intake facilities to work up rules for design and provide conditions for their normal functioning. Results: design of water intake facilities on mountain rivers for water-supply systems of settlements are not regulated by a special building code. On the basis of the existing literature on the problem under discussion and the experience of operation, a general scheme of water intake unit on mountain rivers has been developed. The recommended scheme is advisable to use for dam water intake facilities on upper mountain rivers. Conclusion: According to the developed scheme the river stream arriving to the intake reservoir and preliminary water cleaning structure can be regulated contributing to effective preliminary water cleaning and to raising the reliability of the water supply system as a whole.
Key words: headwater area, dam intakes, bed sediment, suspended particles, desilting of rivers, river flow control, upstream, downstream, retaining wall.
References:
1. Altunin, S. T. (1950). Regulirovanie rusel rek pri vodozabore [Improvement of rivers during water intake]. M.: Sel'hozgiz, 248 p. (in Russian).
2. Altunin, S. T. (1962). Regulirovanie rusel [Improvement of rivers]. M.: Sel'hozgiz, 352 p. (in Russian).
3. Asatryan, O. (2017). Uluchshenie raboty gorizontal'nyh otstojnikov predvaritel'noj ochistki vody [Improving operation of horizontal flow sedimentation tanks of preliminary water treatment]. Nauchnye trudy Nacional'nogo universiteta arhitektury i stroitel'stva Armenii, vol. III, issue 66, pp. 3–9. (in Russian).
4. Asatryan, O. (2016). Osobennosti raboty vodopriemnyh sooruzhenij na gornyh rekah i puti ih uluchsheniya [Working peculiarities of intake structures on mountain rivers and ways of improving thereof]. Nauchnye trudy Nacional'nogo universiteta arhitektury i stroitel'stva Armenii, vol. IV, issue 63, pp. 19–24. (in Russian).
5. Bondar', F. I., Eresnov, N. V., Semenov, S. I., Surov, I. E. (1963). Special'nye vodozabornye sooruzheniya [Special water intake structures]. M.: GILSAS, 362 p. (in Russian).
6. Vasil'eva, I. A., ZHuravlev, G. I., Koryukin, S. N. (1978). Gidrotekhnicheskie sooruzheniya [Water development facilities]. M.: Strojizdat, 647 p. (in Russian).
7. Volkov, I. M., Kononenko, P. F., Fedichkin, I. K. (1968). Gidrotekhnicheskie sooruzheniya [Water development facilities]. M.: Kolos, 464 p. (in Russian).
8. Grishin, M. M. (ed.) (1979). Gidrotekhnicheskie sooruzheniya [Water development facilities]. M.: Vysshaya shkola, 615 p. (in Russian).
9. Loginov, G. I. (2007). Ruslovye i gidravlicheskie processy pri vodozabore iz gornyh rek v gidroehnergeticheskie i irrigacionnye sistemy [Run-of-river and hydraulic processes in the course of water intake from mountain rivers into hydropower and irrigation systems]. avtoref. dis. dokt. tekh. nauk, Bishkek. (in Russian).
10. Mamedov, A. Sh. (2001). Sposoby ochistki gorizontal'nyh otstojnikov [Methods of cleaning horizontal flow sedimentation tanks]. Water Supply and Sanitary Technique, № 12, pp. 15–16. (in Russian).
11. Mamedov, A. Sh. (2003). Vodozaborno-ochistnye sooruzheniya dlya gornyh rek [Water-intake and treatment facilities for mountain rivers]. Water Supply and Sanitary Technique, № 8, pp. 18–19. (in Russian).
12. Nedriga, V. P. (ed.) (1983). Spravochnik proektirovshchika. Gidrotekhnicheskie sooruzheniya [Reference book of design engineer. Water development facilities]. M.: Strojizdat, 543 p. (in Russian).
13. Nikoladze, G. I., Somov, M. A. (1995). Vodosnabzhenie [Water supply system]. M.: Strojizdat, 688 p. (in Russian).
14. Orlov, E. V. (2015). Vodozabornye sooruzheniya [Water intake structures]. M.: Izdatel'stvo Associacii stroitel'nyh vuzov, 136 p. (in Russian).
15. Petevotyan, R. A.., Saakyan, A.., Sarkisyan, V. (2015). Izmenenie teplovogo rezhima rek Respubliki Armeniya v rezul'tate hozyajstvennoj deyatel'nosti [Changing thermal conditions of rivers of the Republic of Armenia resulting from business activity]. Izvestiya Nacional'nogo universiteta arhitektury i stroitel'stva Armenii, vol. I, issue 45, pp. 3–7. (in Russian).
16. Petevotyan, R. A., Asatryan O. (2017). Ispol'zovanie gabionnyh struktur dlya regulirovaniya rusla i sovmestnogo priema poverhnostnyh i podruslovyh stokov gornyh rek [Using gabion structures for river improvement and joint collection of surface and underflow runoffs of mountain rivers]. Izvestiya Nacional'nogo universiteta arhitektury i stroitel'stva Armenii, № 4(57), pp. 59–63. (in Russian).
17. Minstroj Rossii (2004). SNiP 2.04.02-84*. Vodosnabzhenie. Naruzhnye seti i sooruzheniya [Water supply system. External networks and structures]. M.: FGUP CPP, 128 p. (in Russian).
18. Hachatryan, A. G. (1957). Otstojniki na orositel'nyh sistemah [Sedimentation tanks in irrigation systems]. M.: Sel'hozgiz, 342 p. (in Russian).
19. Chugaev, R. R. (1985). Gidrotekhnicheskie sooruzheniya, ch. II [Water development facilities, part II]. M.: Agropromizdat, 302 p. (in Russian).
20. Wegelin, M. (1997). Traitement d'Eau de surface par des Prefiltres a Gravier. Dübendorf: Centre de cooperationsuisse pour la technologie et la management, 82 p.

Popovych V. F., Dunaieva Ie. A.STANDARDIZED PRECIPITATION INDEX USAGE FOR RESERVOIRS OPERATION REGIME ANALYSIS
DOI: 10.23968/2305–3488.2018.20.3.39–47

Introduction: the interrelation between the level of availability of water in the reservoirs of the urban water cycle of the arid zone with the values of the standardized precipitation index (SPI) has been analyzed. The scientific novelty of the work is to reveal the opportunities for using SPI in order to provide adequate control actions that significantly limit the use of water resources. Methods and materials: water availability of the territory has been analyzed with usage of the standardized precipitation index, half of year and longer time scale intervals have been used. Results: by the example of the urban water cycle of the city of Simferopol the interrelation of the total deficit of the city's water balance and the periods of low SPI values is shown, especially in the joint analysis of the annual, biennial and a three-year cycle. Conclusion: the use of SPI along with the tools of hydrological and agrohydrological modelling was suggested for prediction droughts in the regions that suffer from water shortage. Joint use of 24- and 36-month SPI calculation scales is the most effective to simulate the periods of water-deficiency in the Simferopol reservoir.
Key words: probability, water resources, availability, reservoir, standardized precipitation index
References:
1. Dunaieva, Ie. A., Popovych, V. F., Lyashevskij, V. I. (2015). Analiz dinamiki kolichestvennyh i kachestvennyh harakteristik vodnyh resursov s ispol'zovaniem otkrytyh GIS i agrogidrologicheskih modelej [Analysis of the dynamics of quantitative and qualitative characteristics of water resources using open GIS and agrohydrological models]. Nauchnyj zhurnal Rossijskogo NII problem melioracii, № 1(17), pp. 127–141. (in Russian)
2. Dyulichev, V. P. (2005). Rasskazy po istorii Kryma [Stories on the history of the Crimea]. Simferopol': Kvadranal, 320 p. (in Russian)
3. Korolyuk, V. S., Portenko, N. I., Skorohod, A. V., Turbin, A. F. (1985). Spravochnik po teorii veroyatnostej i matematicheskoj statistike [A handbook on probability theory and mathematical statistics]. M.: Nauka, 640 p. (in Russian)
4. Minprirody Rossii (2011). Metodicheskie ukazaniya po razrabotke pravil ispol'zovaniya vodohranilishch. [Methodological instructions for the development of rules for the use of reservoirs]. Utv. prikazom Min. prirodnyh resursov i ehkologii RF № 17 ot 26.01.2011. [online] Available at: http://www.gostrf.com/normadata/1/4293791/4293791463.pdf [accessed on 14.05.2018].
5. Motovilov, Yu.G., Balyberdin, V.V., Garcman, B.I., Gel'fan, A.N., Morejdo, V.M., Sokolov, O.V. (2017). Kratkosrochnyj prognoz pritoka vody v Burejskoe vodohranilishche na osnove modeli ECOMAG s ispol'zovaniem meteorologicheskih prognozov [Short-term forecast of water inflow to the Bureyskoye reservoir based on the ECOMAG model using meteorological forecasts]. Vodnoe hozyajstvo Rossii. № 1, pp. 78–102.
6. Popovych, V.F., Dunaieva, Ie.A. (2015). Modelirovanie pritoka v vodohranilishcha dlya ocenki dostupnosti vodnyh resursov v ramkah gorodskogo vodnogo cikla [Modeling the inflow to reservoirs to assess the availability of water resources within the urban water cycle]. Puti povysheniya ehffektivnosti oroshaemogo zemledeliya. Nauchno-prakticheskij zhurnal. № 2(58), pp. 114–120. (in Russian)
7. P'yankov, S.V., Shihov, A.N. (2017). Geoinformacionnoe obespechenie modelirovaniya gidrologicheskih processov i yavlenij [Geoinformation support of modeling of hydrological processes and phenomena]. Perm': Perm. gos. nac. issled. un-t, 148 p. (in Russian)
8. Svoboda, M., Hajes, M., Vud, D. (2012). Rukovodstvo dlya pol'zovatelej standartizirovannogo indeksa osadkov [Manual for Users of the Standardized Precipitation Index]. Vsemirnaya Meteorologicheskaya Organizaciya (WMO-№ 1090). [online] Available at: http://www.droughtmanagement.info/literature/WMO_standardized_precipitation_index_user_guide_ru_2012.pdf [accessed on: 25.05.2018].
9. Strelec, B.I. (ed.) (1987). Spravochnik po vodnym resursam [Handbook on water resources]. K.: Urozhaj, 304 p. (in Russian)
10. Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J.R., Haney, E.B., Neitsch, S. L. (2012). Soil and Water Assessment Tool. Input/Output Documentation. Version 2012. Technical report: № 439. [online] Available at: https://swat.tamu.edu/documentation/ [accessed on 11.05.2018]
11. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., van Liew, M.W., Kannan, N., Jha, M. K. (2012). SWAT: model use, calibration, and validation. Trans. ASABE, vol. 55(4), pp. 1491–1508.
12. Guttman, N. B. (1999). Accepting the Standardized Precipitation Index: a calculation algorithm. Journal of the American water resources association, JAWRA, vol. 35, № 2, pp. 311–322.
13. Leon, L. F. (2014). MapWindow Interface for SWAT (MWSWAT). [online] Available at: http:waterbase.org./ documents.html [accessed on 14.05.2018]
14. McKee, T. B., Doesken, N. J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993, pp. 179–184.
15. Popovych, V., Dunaieva, Ie. (2014). Monitoring and Evaluation of Water Availability of the South of Ukraine and Russian Federation with Usage of the Standardized Precipitation Index. International Journal of Engineering Research & Technology (IJERT), vol. 3, issue 9, pp. 24–27.
16. Qi, Z. , Kang, G. , Chu, C., Qiu, Y. , Xu, Z., Wang, Y. (2017). Comparison of SWAT and GWLF Model Simulation Performance in Humid South and Semi-Arid North of China. Water, vol. 9 (567), 19 p.
17. The National Climatic Data Center (NCDC) [online]. Available at: ftp://ftp.ncdc.noaa.gov/pub/data/gsod [accessed on: 11.06.2018].
18. Zhang, C., Peng, Y., Chu, J., Shoemaker, C. A., Zhang, A. (2012). Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China. Hydrol. Earth Syst. Sci., vol. 16, pp. 4033–4047.

Starchak V. G., Tsybulia S. D., Ivanenko K. N., Buialska N. P., Kostenko I. A.IMPROVING WATER PURIFICATION EFFICIENCY AS A WAY TO ENVIRONMENTAL SAFETY AND RESOURCE SAVING
DOI: 10.23968/2305–3488.2018.20.3.48–53

Introduction: the progressive technogenic pollution of water bodies not only worsens the quality of water, but also creates a high level of environmental hazard due to the risk of man-made accidents on water treatment equipment, water disposal and water supply, pipelines. This requires the development of new protective compositions, not only with high efficiency of water treatment, especially heavy metals, but at the same time increasing the resistance of equipment, pipelines to the most dangerous corrosion-mechanical disruptions (the main cause of man-made accidents). Methods and materials: to develop such protective compositions, new synergistic polyfunctional additives have been investigated capable of reacting not only with water pollutants but also with surface metal atoms. The optimal synergistic supplement was determined by computer simulation. Results: a synergistic protective composition on secondary raw materials was proposed (with utilization of regional wastes). Conclusion: the proposed synergistic protective composition when used in a complex water treatment allows to ensure reliable operation of equipment, pipelines, improve the ecological safety of water bodies.
Key words: water treatment from heavy metals, protective composition, increase in equipment resistance to corrosion-mechanical destruction and technogenic accidents.
References: 1. Danilov-Danil'yan, V. I. (ed.) (1997). Ekologiya, ohrana prirody i ehkologicheskaya bezopasnost' [Ecology, nature conservation and environmental security]. M.: Nauka, 424 p. (in Russian).
2. Rejmers, N. F. (1990). Prirodopol'zovanie [Management of natural resources]. M.: Nauka, 634 p. (in Russian).
3. Vaganov, P. A. (2002). Chelovek. Risk. Bezopasnost' [Man. Risk. Safety]. SPb: Izdatel'stvo Sankt-Peterburgskogo universiteta, 160 p. (in Russian).
4. Orlov, D. S., Sadovnikova, L. K., Lozanovskaya, I. N. (2002). Ekologiya i ohrana biosfery pri himicheskom zagryaznenii [Ecology and biosphere protection in case of chemical contamination]. M.: Vysshaya shkola, 334 p. (in Russian).
5. Pohodnya, І. K. (ed.) (1998). Suchasne materіaloznavstvo ХХІ st. [Contemporary material sciences of ХХІ century]. Kiev: Naukova dumka, 658 p. (in Ukrainian).
6. Shluger, M. A., Azhogin, F. F., Efimov, E. A. (1995). Korroziya i zashchita metallov [Corrosion and materials protection]. M.: Metallurgiya, 216 p. (in Russian).
7. Starchak, V. G. (1992). Vliyanie korrozionnoj situacii na sostoyanie ehkosistem [Impact of corrosive situation on the state of ecological systems]. Montazhnye i specraboty v stroitel'stve, № 10, pp. 11–12. (in Russian).
8. Koz'menko, S. N. (1997). Ekonomika katastrof [Economy of disasters]. Kiev: Naukova dumka, 203 p. (in Russian).
9. Belov, S. V. (2006). Ohrana okruzhayushchej sredy [Protection of environment]. M.: INFRA, 425 p. (in Russian).
10. Sidorenko, S. N., Chernyh, N. A. (2002). Korroziya metallov i voprosy ehkologicheskoj bezopasnosti magistral'nyh trubo-provodov [Corrosion of metals and problems of environmental safety of trunk pipelines]. M.: RUDN, 83 p. (in Russian).
11. Mel'nik, L. G. (2002). Ekologіchna ekonomіka [Economic ecology]. Sumi: Unіversitet. kniga, 346 p. (in Ukrainian).
12. Starchak, V. G., Tcibula, S. D., Buialska, N. P. (2012). Vpliv ekologіchnoї situacії na protikorozіjnij zahist metalokonstrukcіj [Impact of environmental situation on anticorrosion protection of metal structures]. Fіz.-hіm. mekhanіka mater., № 9, t. 2, pp. 767–772. (in Ukrainian).
13. Davydova, S. L., Tagasov, V. I. (2002). Tyazhelye metally kak supertoksikanty ХХ veka [Heavy metals as supertoxicants of ХХI century]. M.: RUDN, 140 p. (in Russian).
14. Stadnickij, G. V., Rodionov, A. I. (1998). Ekologiya [Ecology]. M.: Vysshaya shkola, 298 p. (in Russian).
15. Korte, F. (1997). Ekologicheskaya himiya [Ecological chemistry]. M.: Mir, 188 p. (in Russian).
16. Golovko, A. I., Kucenko, S. A. (1999). Ekotoksikologiya [Ecotoxicology]. M.: NIIHV SPbGU, 452 p. (in Russian).
17. Tsibulya, S. D. (2004). Zapobіgannya tekhnogennih avarіj pіdvishchennyam korozіjnoї trivkostі metalokonstrukcіj [Prevention of man-induced accidents through increasing corrosive resistance of metal structures]. Ekologіya dovkіllya ta bezpeka zhittєdіyal'nostі, № 4, pp. 35–41. (in Ukrainian).
18. Starchak, V. G., Buialska, N. P., Cibulya, S. D. (2004). Naukovі osnovi pіdvishchennya ekologіchnoї bezpeki metalokon-strukcіj u protikorozіjnomu zahistі [Science behind enhancing environmental safety of metal structures in anticorrosion protection]. Fіz.-hіm. mekhanіka mater., specvip. № 4, t. 2, pp. 853–859. (in Ukrainian).
19. Starchak, V. G., Alekseenko, S. A., Buialska, N. P. (2008). Rol' geteroatomov v obrazovanii metallohelatnyh nanostruktur pri poverhnostnoj modifikacii materialov [Role of heteroatoms in formation of metalchelating nonostructures in case of surface modifica-tion of materials]. Nanostrukturnoe materialovedenie, № 2–4, pp. 70–84. (in Ukrainian).
20. Hіl'chevs'kij, V. K. (1999). Vodopostachannya ta vodovіdvedennya. Gіdrologіchnі aspekti [Water supply and water removal. Hydrological aspects]. Kiev: KDU, 319 p. (in Ukrainian).
21. Zhuk, N. P. (2006). Kurs teorii korrozii i zashchity metallov [Course in the theory of corrosion and protection of metals]. M.: Al'yans, 472 p. (in Russian).
22. Starchak, V. G., Machul's'kij, G. M., Cibulya, S. D., Machul's'kij, O. M. (2014). Ocіnka tekhnogennogo vplivu na ekologіchnu bezpeku tekhnoprirodnih system [Estimation of man-induced impact on environmental security of technical natural systems]. Standar-tizacіya. Sertifіkacіya. Yakіst', № 3(88), pp. 53–58. (in Ukrainian).
23. Gordon, A., Ford, R. (1986). Sputnik himika [Chemist’s guide]. M.: Mir, 543 p. (in Russian).
24. Babej, Yu. I., Soprunyuk, N. G. (1991). Zashchita stali ot korrozionno-mekhanicheskih razrushenij [Steel protection against stress-corrosion fractures]. Kiev: Tekhnika, 126 p. (in Russian).
25. Walters, F. H. (1991). Design of Corrosion inhibitors use the Hard and Soft Acid-Base (HSAB) Theory. Chemical Education, vol. 68, № 1, pp. 29–31.

ECOLOGY

Dregulo A. M., Kudryavtsev A. V.TRANSFORMATION OF TECHNO-NATURAL SYSTEMS OF WATER TREATMENT TO OBJECTS OF PAST ENVIRONMENTAL DAMAGE: PECULIARITIES OF THE LEGAL AND REGULATORY FRAMEWORK
DOI: 10.23968/2305–3488.2018.20.3.54–62

Introduction: when operating techno-natural drainage systems, in particular silt areas, there are significant shortcomings associated with technological and structural disturbances, almost always associated with a negative impact on the environment. The reason for this is, in particular, the contradiction of regulatory and legislative requirements. Methods and materials: as an analysis method, an analysis of the conceptual apparatus of rational nature management, a number of environmental requirements and official comments of the supervisory bodies was used. Results: significant differences in the understanding of environmental activities in the operation of silt areas were identified. It is shown that the lack of clarity in this issue leads to a distortion of understanding by nature users of the existing legislation, which facilitates the transformation of the facilities of sanitation facilities for processing sewage sludge into the objects of accumulated environmental damage. Conclusion: the provisions of the article can be used in the development of methodology (measures) for identification, systematization and liquidation of objects of past environmental damage in housing and communal services, as well as in the search for technologically and economically acceptable ways of utilizing wastewater sludge.
Key words: sewage sludge, landfill sewage sludge, nature management, operation of structures, natural-economic systems, regulatory and legislative framework, past environmental damage.
References:
1. Verigina, E. A. (2000). Intensifikaciya raboty ilovyh ploshchadok [Intensification of the operation of sludge sits]. kand. tekh. nauk. Moskovskij gosudarstvennyj stroitel'nyj universitet. (in Russian).
2. Goskomsanehpidnadzor Rossii (1997). SANPIN 2.1.7.573-96. Gigienicheskie trebovaniya k ispol'zovaniyu stochnyh vod i ih osadkov dlya orosheniya i udobreniya [Hygienic requirements for the use of sewage and their precipitation for irrigation and fertilization]. M.: Minzdrav Rossii, 55 p. (in Russian).
3. Dregulo, A. M. (2016). Problemy zagryazneniya okruzhayushchej sredy osadkami ilovyh kart razlichnyh srokov zhiznennogo cikla [Problems of pollution of the environment with deposits of silt maps of different terms of the life cycle]. Agrohimiya, № 8, pp. 88–92. (in Russian).
4. Dregulo, A. M., Kulibaba, V. V., Gil'deeva, I. M. (2016). Ilovye ploshchadki kak specificheskie ob`ekty nakoplennogo ehkologicheskogo ushcherba (v chastnom bassejne Finskogo zaliva) [Sludge ponds as specific objects of accumulated environmental damage (in the private Gulf of Finland)]. Obshchestvo. Sreda. Razvitie, № 3 (40), pp. 115–119. (in Russian).
5. Dregulo, A. M., Vitkovskaya, R. F., Petrov, A. N. (2016). Ob`ekty proshlogo ehkologicheskogo ushcherba i problemy pochvennoj utilizacii ilov i osadkov stochnyh vod [Objects of past ecological damage and problems of soil utilization of silt and sewage sludge]. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tekhnologii i dizajna. Seriya 1: estestvennye i tekhnicheskie nauki, № 1, pp. 68–71. (in Russian).
6. Dregulo, A. M., Pitul'ko, V. M. (2018). Analiz tekhnicheskih reshenij izvlecheniya tyazhelyh metallov iz geterogennyh othodov sistem vodootvedeniya [Analysis of technical solutions for extraction of heavy metals from heterogeneous wastes of wastewater systems]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle, № 2, pp. 27–39. (in Russian).
7. Kulibaba, V. V., Dregulo, A. M., Vitkovskaya, R. F. (2017). Ekonomika i menedzhment bezopasnosti. Proshlyj ehkologicheskij ushcherb [Economics and Security Management. Past environmental damage]. SPb.: Izd. SPbGUPTD, 100 p. (in Russian).
8. Minregion Rosii (2012). SP 32.13330.2012. Kanalizaciya. Naruzhnye seti i sooruzheniya [Sewerage. External networks and facilities]. Aktualizirovannaya redakciya SNiP 2.04.03-85. M., 91 p. (in Russian).
9. Panov, V. P., Dregulo, A . M. (2010). Soderzhanie tyazhelyh metallov v izbytochnyh ilah i osadkah biologicheskih ochistnyh sooruzhenij (na primere g. Sankt-Peterburga) [Content of heavy metals in excess muds and sediments of biological treatment facilities (by the example of St. Petersburg)]. Bezopasnost' v tekhnosfere, № 3, pp. 37–39. (in Russian).
10. Panov, V. P., Dregulo, A. M. (2010). Soderzhanie tyazhelyh metallov v organicheskih veshchestvah aktivnyh ilov i osadkov stochnyh vod [Content of heavy metals in organic substances of activated sludge and sewage sludge]. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tekhnologii i dizajna. Seriya 1: estestvennye i tekhnicheskie nauki, № 4, pp. 33–35. (in Russian). 11. Rosprirodnadzor (2015). Pis'mo ot 7 dekabrya 2015 g. № AS-03-02-36/21630 «On the direction of clarification». [online] Available on: http://www.consultant.ru/document/cons_doc_LAW_195497 [accessed on 25.06.2018] (in Russian).
12. Minprirody Rossii (2014). Pis'mo ot 18 avgusta 2014 g. № 05-12-44/18132 «Po voprosu raz`yasneniya primeneniya prirodoohrannogo zakonodatel'stva Rossijskoj Federacii pri otnesenii ilovyh osadkov k othodam proizvodstva» ["On the clarification of the application of environmental legislation of the Russian Federation when referring to sludge to production waste"]. [online] Available on: http://www.garant.ru/products/ipo/prime/doc/70646668/#ixzz5JpokxFk1 [accessed on 27.06.2018]. (in Russian).
13. Minstroj Rossii (2015). Pis'mo ot 03.02.2015 № 2279-01/04 «Po voprosu otneseniya poligona skladirovaniya osadka stochnyh vod k ob"ektam vodootvedeniya» [“On the issue of assigning a sewage sludge landfill to water disposal facilities”]. [online] Available on: http://www.consultant.ru/document/cons_doc_LAW_137913/ [accessed on 28.06.2018]. (in Russian).
14. Pitul'ko, V. M., Kulibaba, V. V., Dregulo, A. M. (2016). Ekologicheskie riski Severo-Zapadnogo regiona v svyazi s ob"ektami proshlogo nakoplennogo ushcherba [Ecological risks of the North-West region in connection with the objects of the past accumulated damage]. Regional'naya ehkologiya, № 1 (43), pp. 28–37. (in Russian).
15. Minprirody RF, Roskomzem (1995). Prikaz ot 22 dekabrya 1995 g. № 525/67 «Ob utverzhdenii Osnovnyh polozhenij o rekul'tivacii zemel', snyatii, sohranenii i racional'nom ispol'zovanii plodorodnogo sloya pochvy» [“On Approval of the Basic Provisions on Land Reclamation, Removal, Preservation and Rational Use of the Fertile Soil Layer”] [online] Available on: http://base.garant.ru/2107557/#ixzz5O2hV89GB [accessed on 27.06.2018] (in Russian).
16. Komitet Soveta Federacii po agrarno-prodovol'stvennoj politike i prirodopol'zovaniyu (2017). Soveshchanie «O prakticheskih aspektah utilizacii proshedshih obrabotku osadkov stochnyh vod» [“On Practical Aspects of Utilization of Sewage Sludge Treated”]. [online] Available on: http://agrarian.council.gov.ru/activity/activities/other_activities/79450/ [accessed on 25.06.2018]. (in Russian).
17. Solov'yanov, A. A. (2016). O likvidacii nakoplennogo (proshlogo) ehkologicheskogo vreda [“On Elimination of Accumulated (Past) Environmental Damage”]. Neftegazohimiya, № 1, pp. 28–33. (in Russian).
18. Federal'noe agentstvo po tekhnicheskomu regulirovaniyu i metrologii (2012). GOST R 54535-2011. Resursosberezhenie. Osadki stochnyh vod. Trebovaniya pri razmeshchenii i ispol'zovanii na poligonah [“Resource-saving. Sewage sludge. Requirements for placement and use on the landfill”]. M.: Standartinform, 6 p. (in Russian).
19. Federal'nyj zakon RF (1998). «Ob othodah proizvodstva i potrebleniya» [“On Production and Consumption Wastes”] № 89-FZ ot 24.06.1998. (in Russian).
20. Casado-Vela, J., Selles, S., Diaz-Crespo, C., Navarro-Pedreno, J. (2007). Effect of composted sewage sludge application to soil on sweet pepper crop (Capsicum annuum var. annuum) grow under two explotitation regimes. Waste Management, № 27(11), pp. 1509–1518.
21. Song, U., Lee, E. J. (2010). Environmental and economical assessment of sewage sludge compost application on soil and plants in landfill. Resources, Conservation and Recycling, vol. 54, pp. 1109–1116.
22. Wei, Y., Liu, Y. (2005). Effects sewage sludge compost application on crops and cropland in a 3-year study. Chemosphere, vol. 59, pp. 1257–1265.
23. Sovetskij rajonnyj sud g. Bryanska (Bryanskaya oblast') (2015). Reshenie [Decree] № 2-2400/2015 2-2400/2015(2-8324/2014;)~M-7380/2014 2-8324/2014 M-7380/2014 ot 21 iyulya 2015 g. po delu № 2-2400/2015 [online] Available at: http://sudact.ru/regular/doc/5t46mIvuCrJR/ [accessed on 19.08.2018].
24. VladimirOnline.ru (2017). Reabilitaciya kanalizacionnogo nasledstva [Rehabilitation of sewage heritage] [online] Available at: http://vladimironline.ru/society/id_120199/ [accessed on 19.08.2018].

Evdokimov A. A., Kiss V. V.ABOUT WASHING TECHNOLOGY AND THE WORKING LIQUIDS CONTENT
DOI: 10.23968/2305–3488.2018.20.3.63–67

Introduction: the water captured by the hydrocarbon layer during the separation of the washing products can be completely separated at a special dewatering station. The composition of the used liquids used has practically no effect on the quality of washing and rinsing of the equipment. Given these features, there is no need to use highly efficient means of separating the washing products. Methods and materials: the formed product as a result of the previous washing, is taken as the basis of the working fluid. Results: the original way of internal washing of the equipment from hydrocarbon contaminations is offered. Conclusion: the proposed method makes it possible to significantly simplify the technological scheme of the washing complex, equipped with a dewatering station for watered hydrocarbons, to abandon the use of natural water, to reduce energy costs and to avoid pollution of the natural environment.
Key words: flushing complex, hydrocarbons, environmental pollution, dewatering station, emulsion separation.
References: 1. Evdokimov, A. A., Kiss, V. V., Karzhaubaev, A. A., Shaposhnikova, M. M. (2014). Perspektivy racional'nogo ispol'zovaniya prirodnoj vody [Prospects of efficient use of natural water]. Nauchnyj zhurnal NIU ITMO. Seriya: Ekonomika i ehkologicheskij menedzhment, № 2(17), pp. 175–182. (in Russian).
2. Evdokimov, A. A. (2015). Teoriya i praktika zashchity vodoyomov ot uglevodorodnyh zagryaznenij [Theory and practice of protecting water bodies against hydrocarbon pollution]. Saarbryuken: Lambert Academic Publishing, 126 p. (in Russian).
3. Moskvin, L. N. (2017). Klassifikaciya metodov razdeleniya [Classification of separation methods]. Vestnik Sankt-Peterburgskogo universiteta. Fizika i himiya, vol. 4, № 2, pp. 163–214. (in Russian).
4. Magid, A. B., Nasyrov, F. F. (2016). Universal'naya skhema ochistnyh sooruzhenij. Mir nefteproduktov [Universal flow diagram of treatment facilities. World of oil products]. Vestnik neftyanyh kompanij, № 4, pp. 46–48. (in Russian).
5. Kovalenko, V. P., Ulyukin, E. A. (2009). Ochistka neftesoderzhashchih poverhnostnyh vod na ob"ektah sistemy nefteproduktoobespecheniya sel'skohozyajstvennyh predpriyatij [Treatment of petroliferous surface water at the facilities of system of oil-products delivery to agricultural enterprises.]. Mezhdunarodnyj tekhniko-ehkonomicheskij zhurnal, № 5, pp. 40–45. (in Russian).
6. Lur'e, I. E. (1990). O raschyote kanalizacionnyh otstojnikov s tonkoslojnymi blokami [On calculating catch basins with blocks]. Vodnoe hozyajstvo i gidrotekhnicheskoe stroitel'stvo, № 19, pp. 41–43. (in Russian).
7. Cherkasov, V. G. (2007). Vliyanie geometrii tonkoslojnogo prostranstva na razdelitel'nuyu sposobnost' gidrovzvesi v gravitacionnyh separatorah [Influence of geometry of thin-layer environment on separating power of hydraulic suspended matter in gravitational separating devices.]. Gornyj informacionno-analiticheskij byulleten', vol. 10, pp. 343–349. (in Russian).
8. Farahov, M. I., Laptev, A. G., Afanas'ev, I. P. (2005). Separaciya dispersnoj fazy iz zhidkih uglevodorodnyh smesej v neftepererabotke i ehnergosberezhenie [Separation of dispersion phase from liquid hydrocarbon compounds in crude oil refining and energy saving]. Kazan': KGEHU, 134 p. (in Russian).
9. Nazarov, V. V., Kushnarenko, V. L. (2011). Ochistka i separaciya nefteproduktov reocentrifugirovaniem [Cleaning and separation of oil products by means of rheocentrifuging]. Vestnik Orenburgskogo gosudarstvennogo universiteta, № 10, pp. 205–210. (in Russian).
10. Mingazetdinov, I. H., Kulakov, A. A., Gazeev, N. H. (2016). Novye ustrojstva ochistki stochnyh vod ot zagryaznyayushchih veshchestv [New devices of waste water cleaning from contaminants]. Ekologiya i promyshlennaya bezopasnost', № 2(66), pp. 32–33. (in Russian).
11. Laptev, A. G., Farahov, M. I., Mineev, N. G. (2011). Energoresursosberegayushchie modernizacii promyshlennyh ustanovok na predpriyatiyah neftegazohimicheskogo kompleksa [Energy- and resource-saving upgrades of industrial installations at enterprises of gas and petro-chemical complex]. Vestnik Kazanskogo gosudarstvennogo ehnergeticheskogo universiteta, № 2(9), pp. 150–158. (in Russian).
12. Laptev, A. G., Basharov, M. M. (2011). Opredelenie ehffektivnosti tonkoslojnyh otstojnikov pri turbulentnom rezhime [Determining efficiency of thin-layer sediment basins in case of turbulent mode]. Voda: himiya i tekhnologiya, № 5, pp. 33–39. (in Russian).
13. Evdokimov, A. A., Kiss, V. V. (2016). Tonkoslojnaya separaciya ehmul'sij [Thin-layer separation of emulsions]. Water and Ecology, № 1(65), pp. 52–62. (in Russian).
14. Evdokimov, A. A., Bogdanov, A. F., Smolyanov, V. M. (2002). Vysokoehffektivnaya tekhnologiya ochistki kotlov zheleznodorozhnyh cistern [High-efficiency technology of cleaning boilers of railway car tanks]. V: Povyshenie nadyozhnosti i sovershenstvovanie metodov remonta podvizhnogo sostava, SPb: PGUPS, pp. 154–179. (in Russian).
15. Geller, S. V. (2010). Vodomazutnaya ehmul'siya — osnova ustojchivoj i ehkonomichnoj raboty kotloagregatov na lyubyh vidah topochnogo mazuta [Water and mazut emulsion is the basis of stable and energy efficient operation of boiler units on all types of fuel oil.]. Ekologiya i promyshlennost' Rossii, № 2, pp. 10–12. (in Russian).
16. Ioffe, O. B., Evdokimov, A. A. (2010). Rezul'taty ispytanij pilotnoj ustanovki obezvozhivaniya vyazkih nefteproduktov [Results of testing pilot installation of dehydration of viscous petrochemicals]. Ekologiya i promyshlennost' Rossii, № 2, pp. 22–25. (in Russian).
17. Evdokimov, A. A., Ioffe, O. B., Matveev, V. I. (2008). Stanciya obezvozhivaniya nefteproduktov [Station for petrochemicals dehydration]. Patent № 2327504. (in Russian).
18. Evdokimov, A. A. (2008). Sposob obezvozhivaniya nefteproduktov [Method of petrochemicals dehydration]. Patent № 2315803. (in Russian).
19. Evdokimov, A. A, Kiss, V. V, Shermatova, F. M. (2017). Dvuhstupenchatyj sposob ochistki poverhnosti ot zagryaznenij nefteproduktami [Two-stage method of surface cleaning from contamination with petrochemicals]. Patent № 2592521. (in Russian).

Kovshov S. V., Gridina E. B., Ivanov V. V.INSTALLATION FOR MODELING THE PROCESS OF DUST SUPPRESSION IN OPEN-PIT MINES BY WETTING
DOI: 10.23968/2305–3488.2018.20.3.68–75

Introduction: coal dust formed during mining is the main harmful factor of production and is able to participate in the formation of explosive mixtures. One of the effective methods of dust suppression is wetting the dust with water. Purpose of research is to determine the optimal parameters of dust suppression: water pressure and diameter of spray nozzles, investigation of the level of dustiness with changing wind speed, determination of dust suppression efficiency. Methods and materials: creation of a laboratory installation for dust wetting, simulation of the process of hydro-dust suppression: changing the water pressure, spray nozzle diameter and wind speed. Results: it is established that the higher the water supply pressure and the larger the nozzle diameter of the spray, the lower the dust concentration in the laboratory bench. In this case, an essential role is played by wind speed: the maximum jump in the level of dustiness is achieved with an increase in wind speed from 2 m/s to 4 m/s. The dust suppression efficiency is increased from 82 % at water pressure of 60 bar and spray nozzle diameter of 0.2 mm to 92 % at water pressure of 120 bar and spray nozzle diameter of 0.6 mm. Further increase in pressure is not advisable, due to a significant increase in energy costs. Concluson: the proposed principle of dust suppression can be implemented in mines with a high content of groundwater. The cost of cleaning the quarry waters is pretty high. Using the simplest filtration of quarry water with the subsequent wetting of dust surfaces through the "pipe-hose-spray" system, it is possible to achieve effective dust suppression of the mining side and quarry roads. Thus, there is no need for an external source of water and treatment of quarry water, which causes an economic effect.
Key words: mine, dust suppression, dust, spray nozzle, wetting.
References: 1. Kovshov, S., Barkan, M. (2016). Reduction of Dust Emission in Transshipping Processes at Sea Ports. International Journal of Ecology & Development, 31(2), pp. 50–59. (in Russian).
2. Korshunov, G. I., Kovshov, S. V., Safina, A. M. (2017). Dust control methods in open-pit mining. Current state of physical & chemical research. Ecology, Environment and Conservation, vol. 23, issue 2, pp. 883–889. (in Russian).
3. Shuvalov, Yu. V., Il'chenkova, S. A., Gaspar'yan, N. A., & Bul'bashev, A. P. (2004). Snizheniye pyleobrazovaniya i perenosa pyli pri razrushenii gornykh porod [Reduction of dust formation and dust transfer in the destruction of rocks]. Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal), 10, pp. 75–78. (in Russian).
4. Gendler, S. G., Kovshov, S. V. (2016). Investigation into Adhesive Properties of Sodium Carboxymethyl Cellulose Aiming at Development of Dust Suppression Layer. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(1), pp. 2084–2090.
5. Kovshov, S. V., Kovshov, V. P. (2014). Biogenic Fixation of Dusting Surfaces. Life Science Journal, 11 (9), pp. 401–404.
6. Gendler, S., Kovshov, S. (2016). Estimation and Reduction of Mining-Induced Damage of the Environment and Work Area Air in Mining and Processing of Mineral Stuff for the Building Industry. Eurasian Mining, 1, pp. 45–49.
7. Korshunov, G. I., Kovshov, V. P., Kovshov, S. V., Yerzin, A. Kh. (2014). Novyj himicheskij sposob pylepodavleniya pri skladirovanii gornoj massy [A New Chemical Method of Dust Suppression for the Storage of the Rock Mass]. Journal of Mining Institute (Zapiski Gornogo instituta), 207, pp. 116–120. (in Russian).
8. Korshunov, G. I., Mazanik, E. V., Yerzin, A. Kh., Kornev, A. V. (2014). Effektivnost' primeneniya poverkhnostno-aktivnykh veshchestv dlya bor'by s ugol'noy pyl'yu [The effectiveness of the use of surfactants to combat coal dust]. Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal), 3, pp. 55–61. (in Russian).
9. Smirnov, Yu. D., Kamenskiy, A. A., Ivanov, A. V. (2010). Ispol'zovanie parokondensacionnogo sposoba pylepodavleniya pri razlichnyh tekhnologicheskih operaciyah dobychi poleznyh iskopaemyh. [Using of Steam Condensing Way of Dust-Depressing in Different Manufacturing Operations During Mining]. Journal of Mining Institute (Zapiski Gornogo instituta), 186, pp. 82–85. (in Russian).
10. Smirnov, Yu. D., Ivanov, A. V. (2013). Opredelenie optimal'nyh parametrov pnevmogidravlicheskoj forsunki dlya naibolee ehkonomichnogo i ehffektivnogo pylepodavleniya [The Identification Optimal Parameters of Pneumohydraulic Sprayer for the Most Economical and Effective Dust Suppression]. Journal of Mining Institute (Zapiski Gornogo instituta), 203, pp. 98–103. (in Russian).
11. Smirnov, Yu. D., Kovshov, S. V., Ivanov, A. V. (2012). Razrabotka innovacionnogo pylepodavlyayushchego ustrojstva dlya uslovij severnyh regionov [Working out Innovative Dust Control Devices for Conditions of Northern Regions]. Journal of Mining Institute (Zapiski Gornogo instituta), 195, pp. 133–137. (in Russian).
12. Kamenskiy, A. A. (2011). Issledovaniya koagulyacii pylevoj frakcii pri primenenii aehropennogo sposoba pylepodavleniya [Researches of Coagulation of Dust Fraction at Application of the Aerofoamy Way of Dust-Depressing]. Journal of Mining Institute (Zapiski Gornogo instituta), 189, pp. 138–140. (in Russian).
13. Wang, D., Lu, X., Wang, H., Chen, M. (2016). A new design of foaming agent mixing device for a pneumatic foaming system used for mine dust suppression. International journal of mining science and technology, 26(2), pp. 187–192.
14. Dalbayeva, E. P. (2014). Obosnovanie ehffektivnyh mer bor'by s pyl'yu na kar'erah kriolitozony [Justification of Effective Dust Control in the Open-Pits of Cryolithozone]. Journal of Mining Institute (Zapiski Gornogo instituta), 207, pp. 110–111. (in Russian).
15. Seaman, C. E., Shahan, M. R., Beck, T. W., & Mischler, S. E. (2018). Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust. Journal of occupational and environmental hygiene, vol. 15, issue 3, pp. 214–225.
16. Wang, H., Wang, C., Wang, D. (2017). The influence of forced ventilation airflow on water spray for dust suppression on heading face in underground coal mine. Powder Technology, 320, pp. 498–510.
17. Cybulski, K., Malich, B., Wieczorek, A. (2015). Evaluation of the effectiveness of coal and mine dust wetting. Journal of Sustainable Mining, 14(2), pp. 83–92.
18. Yao, Q., Xu, C., Zhang, Y., Zhou, G., Zhang, S., Wang, D. (2017). Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Safety and Environmental Protection, 111, pp. 726–732.
19. Kovshov, S., Kovshov, V. (2015). Chemical Technology of Dust Suppression on Open-Pit Mines. International Journal of Ecology & Development, 30(3), pp. 55–67.
20. Kovshov, S., Erzin, A., Kovshov, V. (2015). Bonding dust with environmentally safe compositions on open dust-forming surfaces in coal producing enterprises. International Journal of Ecology & Development, 30(1), pp. 11–23.

Iurlov A. A., Suntsova N. A., Musikhina T. A., Zemtsova E. A., Koshkina N. A., Devyaterikova S. V., Kazienkov S. A. EFFECTS OF EFFLUENT PRODUCTION OF FLUOROPOLYMERS ON BIOTA
DOI: 10.23968/2305–3488.2018.20.3.76–84

Introduction: man's production activity, its impact on natural components, requires the study and development of scientifically based measures to reduce environmental consequences. A special place is occupied by questions of influence on the biota of industrial wastes containing a complex of new generation pollutants, whose impact on the environment has not been studied in many respects. To this kind of waste can be attributed mother liquor GFR-26 — liquid waste products of fluoropolymers. Now the issues of utilization of these wastes are acute because of their chemical and biological inertness. Methods and materials: the effect of MR SKF-26 on the test objects of different systematic groups was studied. The toxicity assessment was carried out according to scientific developments and the current standards in the field of phytotesting, the viability of cyanobacterial cells was studied by the tetrazol-topographic method. Anaphase-metaphase method of analysis and micro-nuclear test of micropreparations were also used. Results: it is shown that the germination of white mustard seeds (Sinapis alba L.), the survival rate of Daphnia Magna Straus and cyanobacteria (Nostoc paludosum Kutz) decrease under the influence of the stock solution of SKF-26 with a decrease in the dilution ratio. In Scots pine (Pinus sylvestris L.) mitotic activity decreases, and the proportion of cytogenetic disorders increases with a decrease in the dilution rate of said mother liquor. Conclusion: the negative effect of MR on biota and the need to recycle MP, which excludes its release into the environment, is proved.
Key words: pollutants, fluoropolymers, mother liquors, biotesting, cytogenetics, anaphase-telophase method.
References:
1. Alekseev, V. A. (1989). Diagnostika zhiznennogo sostoyaniya derev'ev i drevostoev [Diagnostics of life state of trees and standing timber]. Lesovedenie, № 4, pp. 51–57. (in Russian).
2. Alov, I. A. (1965). Patologii mitoza [Pathologies of indirect division]. Vestnik AMN SSSR, № 11, pp. 58–66. (in Russian).
3. Amosova, A. A. (2004). Ekologo-geneticheskaya ocenka vliyaniya solej tyazhelyh metallov na luk repchatyj v usloviyah modificiruyushchego ehffekta aktivnogo ila [Ecological and genetic evaluation of influence of salts of heavy metals on garden onions under conditions of modifying effect of biological sludge]. avtoref. dis. kand. biol. nauk. Samara. (in Russian).
4. Belousov, M. V. (2011). Vliyanie tyazhelyh metallov na citogeneticheskuyu izmenchivost' sosny obyknovennoj (Pinus sylvestris L.) [Influence of heavy metals on cytogenetic variability of common pine (Pinus sylvestris L.)]. kand. biolog. nauk. Voronezh, 160 p. (in Russian).
5. Volovik, E. V. (2015). Mekhanizm vyzhivaniya bakterij v okruzhayushchej srede [Mechanism of bacteria survivability in environment]. [online] Available at: https://www.scienceforum.ru/2015/pdf/13008.pdf [accessed on 18.05.2018].
6. Glanc, S. (1999). Mediko-biologicheskaya statistika [Medical and biological statistics]. M.: Praktika, 459 p. (in Russian).
7. Dalyan, E. B., Vardanyan, I. V. (2008). Vliyanie pH na vzaimodejstvie CuTOEPyP4 s DNK [nfluence of рН on interaction of CuTOEPyP4 with desoxynucleic acid]. Uchenye zapiski evrejskogo gosudarstvennogo universiteta, vol. 3, pp. 97–100. (in Russian).
8. Domracheva, L. I., Kandakova, L. V., Ashihmina, T. YA. (2008). Primenenie tetrazol'no-topograficheskogo metoda opredeleniya degidrogenaznoj aktivnosti cianobakterij v zagryaznennyh sredah [Application of tetrazolium topographic method of determining dehydrogenase activity of cyanobacteria in polluted environment.]. Teoreticheskaya i prikladnaya ehkologiya, № 2, pp. 23–28. (in Russian).
9. Doroshev, S. A. (2004). Vliyanie antropogennyh stressorov na izmenchivost' citogeneticheskih pokazatelej u sosny obyknovennoj [Influence of anthropogenic stressors on variability of cytogenetic exponents with common pine]. kand. biolog. nauk. Voronezh. (in Russian).
10. Dubinina, L. G. (1978). Strukturnye mutacii v opytah s Crepis capillaries L. [Structural mutations in experiments with Crepis capillaries L.]. M.: Nauka, 188 p. (in Russian).
11. El'kina, T. S., Hitrin, S. V, Fuks, S. L., Devyaterikova, S. V. (2013). Testirovanie othodov proizvodstva ftorplastov na toksichnost' k pochvennoj mikroflore i vysshemu rasteniyu [Testing the waste products of fluoroplastics for toxicity to the soil microflora and the higher plant]. V: Materialy Vserossijskoj nauchno-prakticheskoj konferencii-vystavki ehkologicheskih proektov s mezhdunarodnym uchastiem «Biznes. Nauka. Ekologiya rodnogo kraya: problemy i puti ih resheniya», Kirov, pp. 281–285. (in Russian).
12. El'kina, T. S., Domracheva, L. I., Hitrin, S. V. (2014). Opredelenie stepeni toksichnosti othodov proizvodstva ftorpolimerov po reakcii pochvennoj mikroflory i cianobakterii Nostoc paludosum Kütz [Identifying degree of toxicity of fluoropolymers production waste by the reaction of soil microflora and cyanobacterium Nostoc paludosum Kütz.]. Principy ehkologii, vol. 3, № 1, pp. 43–52. (in Russian).
13. Zhmur, N. S. (1997). Gosudarstvennyj i proizvodstvennyj kontrol' toksichnosti vod metodami biotestirovaniya v Rossii [State- and production-level water toxicity control using biotesting methods in Russia]. M.: Mezhdunarodnyj Dom Sotrudnichestva, 114 p. (in Russian).
14. Zemcova, E. A. (2017). Ekologicheskie aspekty primeneniya matochnyh rastvorov proizvodstva ftorpolimerov F-4D, SKF-26, SKF-32 pri poluchenii kompozicionnyh ehlektrohimicheskih pokrytij na osnove cinka [Environmental aspects of using mother solutions of F-4D, SKF-26, SKF-32 fluoropolymers production when providing composite zinc-based electrochemical coatings.]. kand. him. nauk, Kirov. (in Russian).
15. Kalaev, V. N. (2000). Citogeneticheskij monitoring zagryazneniya okruzhayushchej sredy s ispol'zovaniem rastitel'nyh test-ob"ektov [Cytogenetic monitoring of contamination of environment with the use of vegetational test targets]. avtoref. dis. kand. biol. nauk. Voronezh. (in Russian).
16. Kalaev, V. N., Karpova, S. S. (2004). Citogeneticheskij monitoring: metody ocenki zagryazneniya okruzhayushchej sredy i sostoyaniya geneticheskogo apparata organizma [Cytogenetic monitoring: methods of assessing contamination of environment and state of genetic apparatus of a body]. Voronezh: FGBOU VO «Voronezhskij gosudarstvennyj universitet», 80 p. (in Russian).
17. Makovleva, O. A. (2013). Citogenetika: metodicheskie ukazaniya k laboratornym rabotam [Cytogenetics: methodological instructions to laboratory-based works]. Buzuluk: Buzulukskij gumanitarno-tekhnolog. in-t. (filial) OGU, 135 p. (in Russian).
18. Ministerstvo prirodnyh resursov Rossijskoj Federacii (2002). Rukovodstvo po opredeleniyu metodom biotestirovaniya toksichnosti vod, donnyh otlozhenij, zagryaznyayushchih veshchestv i burovyh rastvorov [Guidelines for determining toxicity of water, bottom deposits, contaminants and drilling muds by means of biotesting.]. Moskva: REHFIA, NIA-Priroda, 61 p. (in Russian).
19. Pausheva, Z. P. (1988). Praktikum po citologii rastenij [Practical course on cytology of plants]. M.: Agropromizdat, 27 p. (in Russian).
20. Pravdin, L. F., Budaragin, V. A., Kruklis, M. V., SHershukova, O. P. (1972). Metodika kariologicheskogo izucheniya hvojnyh porod [Methods of karyological study of coniferous species]. Lesovedenie, № 2, pp. 67–75. (in Russian).
21. Sen'kevich, E. V. (2007). Citogenetika sosny obyknovennoj i berezy povisloj v rajone Novovoronezhskoj AEHS v svyazi s voprosami ocenki zagryazneniya okruzhayushchej sredy [Cytogenetics of common pine and weeping birch in the area of Novovoronezhskaya NPP in connection with problems of assessing environmental contamination]. kand. biolog. nauk. Voronezh. (in Russian).
22. Tandelov, Yu. P. (2012). Ftor v sisteme pochva–rastenie [Fluorine in soil-plant system]. Krasnoyarsk: Krasnoyarskaya gorodskaya tipografiya, 146 p. (in Russian).
23. Terekhova, V. A., Voronina, L. P., Gershkovich, D. V. (2014). Biotest-sistemy dlya zadach ehkologicheskogo kontrolya: Metodicheskie rekomendacii po prakticheskomu ispol'zovaniyu standartizovannyh test-kul'tur [Biological test systems for environmental monitoring problems: Methodological recommendations on practical use of standardized testing cultures]. M.: Dobroe slovo, 48 p. (in Russian).
24. Federal'noe agentstvo po tekhnicheskomu regulirovaniyu i metrologii (2006). GOST R 52325-2005. Semena sel'skohozyajstvennyh rastenij. Sortovye i posevnye kachestva. Obshchie tekhnicheskie usloviya [Seeds of agricultural plants. Graded and sowing qualities. General Specifications]. Moskva: Standartinform, 22 p. (in Russian).
25. Fuks, S. L., Hitrin, S. B., Devyaterikova, S. B. (2015). Izuchenie vliyaniya othodov ftorpolimernogo proizvodstva na yachmen' sorta EHl'f [Studying influence of fluoropolymers production waste on barley of Elf grade.]. Teoreticheskaya i prikladnaya ehkologiya, № 4, pp. 52–58. (in Russian).
26. Shafikova, L. M. (1999). Citogeneticheskie osobennosti sosny obyknovennoj v usloviyah promyshlennogo zagryazneniya [Cytogenetic peculiarities of common pine under conditions of industrial contamination]. kand. biolog. nauk. Ufa. (in Russian).
27. Butorina, A. K., Evstratov, N. (1996). The first detected case of amitosis in pine. Forest Genetics, vol. 37, № 11, pp. 137–139.
28. Geras’kin, S. A., Kyu Kimb, J, Oudalova, A. A. (2005). Bio-monitoring the genotoxicity of populations of Scots pine in the vicinity of a radioactive waste storage facility. Mutation Research, № 583, pp. 55–66.

№4

WATERDISPOSAL

Aminova A. F., Sukhareva I. A., Mazitova A. K.OXIDATIVE BREAKDOWN OF PHENOL WITH FENTON’S REAGENT
DOI: 10.23968/2305-3488.2018.23.4.3-8

Waste waters of woodworking enterprises contain such high-toxic substance as phenol. However, the issue of their treatment using new methods is understudied. Therefore, it is of scientific and practical interest to consider oxidative breakdown of toxic organic compounds in such waste waters. The purpose of the research is to study water treatment with such available oxidant as Fenton’s reagent (hydrogen peroxide: iron sulfate (II)). Optimal conditions for treatment are defined experimentally, according to kinetic models of phenol breakdown. The following optimal conditions for oxidation are selected: the mass ratio of hydrogen peroxide to iron sulphate (II) per one cubic decimeter of waste water is 1.82:0.08 (mg), the time of treatment being 60 minutes. Aftertreatment is carried out with 1% aluminum oxychloride coagulant at a dose of 165 mg/dm3 and with 0.1% REF FC cationic polyacrylamide flocculant at a dose of 40 mg/dm3 to achieve regulatory quality limits. The maximum degree of purification after oxidation is 89%, and after treatment with the coagulant and flocculant it goes up to 94% (according to chemical oxygen demand). Physical and chemical parameters of original waste water and aftertreatment water are given. The toxicity level of the water analyzed is considered acceptable, the toxicity index being 0.40. Major advantages of this technique are cheap reagents and the absence of a concentrate polluting the environment.
Key words: oxidative breakdown, phenol, Fenton’s reagent, waste waters of woodworking enterprises.
References: 1. Draginsky, V. L., Alekseyeva, V. A., Usoltsev, V. A. (1995). Povisheniye effektivnosty ochistky vody s ispolzovaniyem tekhnologii ozonirovaniya i sorbtsii na aktivnikh uglyakh [Improving the efficiency of water purification using the technology of ozonation and sorption on activated carbons]. Water Supply and Sanitary Technique, No. 5, pp. 8–10 (in Russian).
2. Dresvyannikov, A. F., Zhelovitskaya, A. V., Tsyganova, M. A., Pronina, Ye. V. (2007). Okisleniye komponentov stochnykh vod proizvodstva tekstilnoy promishlennosty elektrokhimicheskim sposobom [Oxidation of waste water components in the textile industry by the electrochemical method]. Herald of Kazan Technological University, issues 3–4, pp. 172–177 (in Russian).
3. Emzhina, V. V., Mirzoeva, S. N., Ivantsova, N. A. (2014). Okislitelnaya destruktsiya modelnykh stochnykh vod, soderzhashikh pharmatsevticheskiye preparaty, reaktivom Fentona [Oxidative degradation of model wastewater containing pharmaceuticals by Fenton’s reagent]. Advances in Chemistry and Chemical Technology, vol. 28, No. 5 (154), pp. 22–25 (in Russian).
4. Selyukov, A. V., Bursova, S. N., Trinko, A. I. (1990). Primeneniye ekologicheski chistykh okisliteley dlya ochistki stochnykh vod: obzornaya informatsiya [Use of environmentally-friendly oxidants for wastewater treatment: overview]. Moscow: All-Union Research Institute of Problems of Scientific and Technological Advances and Information in Construction, 48 p (in Russian).
5. Syrovatsky, I. P., Gonchikova, Yu. A. (2017). Ispolzovaniye okislitelno-vosstanovitelnykh metodov dlya kolichestvennogo analyza lekarstvennykh sresdstv [Application of oxidation-reduction methods for quantitative analysis of medicinal agents]. Irkutsk: Irkutsk State Medical University, 35 p. (in Russian).
6. Sychev, A. Ya., Isak, V. G. (1995). Soyedineniya zheleza i mekhanizmy gomogennogo kataliza aktivatsyiy О2, Н2О2 i okisleniye organicheskikh substratov [Iron compounds and the mechanisms of the homogeneous catalysis of the activation of О2 and Н2О2 and of the oxidation of organic substrates]. Russian Chemical Reviews, issue 64 (12), pp. 1183–1209 (in Russian).
7. Frumin, G. T. (2013). Ekologicheskaya toksikologiya (ekotoksikologiya). Kurs lektsiy. [Environmental toxicology (ecotoxicology). A course of lectures]. Saint Petersburg: Russian State Hydrometeorological University, 179 p. (in Russian).
8. Iagafarova, G. G., Aminova, A. F., Sukhareva, I. A., Khangildin, R. I., Khangildina, A. R. (2016). Razrabotka metoda ochistky stochnykh vod ot trudnookislyaemykh organicheskikh soyedineniy [Development of method of waste water treatment from hard oxidizable organic compounds]. Water: Chemistry and Ecology, No. 1 (91), pp. 24–29 (in Russian).
9. Daines, C., Schrotter, J.-Ch., Paillard, H. (2005). Installation et procede d’epuration d’un effluent aqueux par oxydation et par filtration membranaire [Installation and method for the purification of an aqueous effluent by means of oxidation and membrane filtration]. Patent No. EP1711435A1.
10. Dasong, Zh., Hongge, G., Jie, Sh. (2011). Experimental study on treatment of wastewater containing highly concentrated phenol with UV/Fenton reagent. Journal of Shandong University of Science and Technology (Natural Science), vol. 30 (1), pp. 92–95.
11. Gottschalk, C., Libra, J. A., Saupe, A. (2010). Application of ozone in combined processes. ozonation of water and waste water: a practical guide to understanding ozone and its applications. Second edition. Weinheim: Wiley-VCH, 378 p.
12. Katsoyiannis, I. A., Canonica, S., von Gunten, U. (2011). Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, vol. 45, issue 13, pp. 3811–3822. https://doi.org/10.1016/j.watres.2011.04.038
13. Si, L., Ruixue, K., Lin, S., Sifan, L., Shuangchun, Y. (2013). Study on treatment methods of phenol in industrial wastewater. International Journal of Scientific & Engineering Research, vol. 4, issue 5, pp. 230–232.
14. Liu, L., Xiao, Y.-B., Gao, M. (2009). Study on phenol degradation in water with UV-Fenton reagent. Journal of Changchun University of Technology (Natural Science Edition), pp. 25–29.
15. Maya, N., Evans, J., Nasuhoglu, D., Isazadeh, S., Yargeau, V., Chris, D. M. (2018). Evaluation of wastewater treatment by ozonation for reducing the toxicity of contaminants of emerging concern to rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, vol. 37, issue 1, pp. 274–284. https://doi.org/10.1002/etc.3952
16. Pisarenko, A. N., Stanford, B. D., Yan, D., Gerrity, D., Snyder, S. A. (2012). Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Research, vol. 46, issue 2, pp. 316–326. DOI: 10.1016/j.watres.2011.10.021
17. Rakovsky, S., Anachkov, M., Zaikov, G. (2009). Fields of ozone applications. Chemistry and Chemical Technology, vol. 3, issue 2, pp. 139–163.
18. Sanchez-Polo, M., von Gunten, U., Rivera-Utrilla, J. (2005). Efficiency of activated carbon to transform ozone OH radicals: influence of operational parameters. Water Research, vol. 39, issue 14, pp. 3189–3198. https://doi.org/10.1016/j.watres.2005.05.026
19. Sobczyński, A., Dobosz, A. (2001). Water purification by photocatalysis on semiconductors. Polish Journal of Environmental Studies, vol. 10, No. 4, pp. 195-205.
20. Song, N., Zhaoxi, Zh. (2011). Experimental study on the oxidation degradation of phenolic compound from refinery wastewater by three-dimensional electrode. Advances in Fine Petrochemicals, vol. 12 (5), pp. 2831.

Ivanyutin N. M., Podovalova S. V.STUDYING ALMA RIVER WATER QUALITY TRANSFORMATION UNDER THE INFLUENCE OF ANTHROPOGENIC ACTIVITY
DOI: 10.23968/2305-3488.2018.23.4.9-19

The purpose of the research is to study the influence of anthropogenic activity on the ecological state and qualitative characteristics of Alma River waters. Several methods were used to achieve that purpose: water quality assessment according to results of a chemical analysis, calculation of an integral water quality index — water pollution index (WPI), and bio-assay techniques. As a result of studies, pollutants characterizing the watercourse, which were identified throughout its full length, were revealed. Those are phosphates (exceeded by a factor of 7–11.45), sulfates (exceeded by a factor of 1.4–3.2), biological oxygen demand BOD5 (exceeded by a factor of 1.6), water hardness salts (exceeded by a factor of 2.15) as well as such heavy metals as lead, cadmium and copper having direct or indirect toxic effect on water flora and fauna, and through those on a human body as well, when being present in water bodies. Bio-assay techniques revealed negative trends in water quality deterioration and presence of toxic substances in river waters. All test cultures showed good results in the tests (showed good test responses to presence of pollutants in water) and can be recommended for use as test objects in comprehensive geo-environmental studies. The combination of the methods applied in this research can be used when carrying out an integrated environmental assessment and determining the pollution degree of surface water bodies. The information on the current ecological state of the watercourse obtained during the research and its comparison with the historical data will facilitate the solution of problems related to river pollution and development of environmental measures to protect water resources against pollution and depletion.
Key words: Alma River, Bodrak River, ecological state, bio-assay, toxicity, monitoring, test culture.
References: 1. Ermakova, N. Yu. (1993). Biologicheskoye testirovaniye sostoyaniya geologicheskoy sredy v sfere vliyaniya krupnykh promyshlennykh predpriyatiy Kryma [Bio-assay techniques for determination of the geological environment state in the sphere of influence of large industrial enterprises in Crimea]. Ekologicheskaya gidrogeologiya stran Baltiyskogo morya. Tezisy dokladov mezhdunarodnogo seminara [Ecological hydrogeology of Baltic Sea countries. Proceedings of the International Scientific Seminar]. Saint Petersburg: Saint Petersburg State University, 139 p. (in Russian).
2. Ermakova, N. Yu. (2000). Rekomendatsii po primeneniyu biotestirovaniya dlya ekspressnykh geotoksikologicheskikh issledovaniy podzemnoy gidrosfery i drugikh obyektov geologicheskoy sredy [Recommendations for use of bio-assay in express geo-toxicological studies of the underground hydrosphere and other objects of the geological environment]. Mineralnyye resursy Ukrainy [Mineral Resources of Ukraine], 2, pp. 41–42 (in Russian).
3. Ermakova, N. Yu. (2017). Vyyavleniye ochagov zagryazneniya prirodnykh vod metodom biologicheskogo testirovaniya i aktualnost ego primeneniya v ekologicheskom monitoringe gidrosfery Kryma [Identification of natural waters’ pollution points using bio-assay techniques and relevance of their use in ecological monitoring of the hydrosphere in Crimea]. In: Arkadyev V. V. (ed.) Sbornik “Polevyye praktiki v sisteme vysshego obrazovaniya. Materialy Pyatoy Vserossiyskoy konferentsii. Posvyashchayetsya 65-letiyu Krymskoy uchebnoy praktiki po geologicheskomu kartirovaniyu Leningradskogo-Sankt-Peterburgskogo gosudarstvennogo universiteta” [Collection of articles “Field practices in the system of higher education. Proceedings of the 5th All-Russian Conference dedicated to the 65th anniversary of practical training in geological mapping in Crimea, arranged by the (Leningrad) Saint Petersburg State University”], pp. 150–152 (in Russian).
4. Peltier, W. H. (1986). Impact of an industrial effluent on aquatic organisms: EPA region IV case history. Environmental Hazard Assessment of Effluents. Proceedings of the Pellston Environmental Workshop. Cody, Wyoming, pp. 216–227.
5. United States Environmental Protection Agency (EPA) (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth Edition. U. S. Environmental Protection Agency. Office of Water (4303T). Washington. DC20460. 266 p. 6. Ivaniutin, N. M., Podovalova, S. V. (2017).
Ispolzovaniye rastitelnykh test-sistem v monitoringe ekologicheskogo sostoyaniya vodnykh obyektov reki Salgir [Use of vegetative test systems in monitoring of the ecological status of water bodies of the Salgir River]. Ekologiya i Stroitelstvo, No. 3, pp. 17–23 (in Russian).
7. Podovalova, S. V., Ivanyutin, N. M. (2017). Otsenka kachestva vod reki Salgir s ispolzovaniyem metoda biotestirovaniya [Estimation of water quality of the Salgir River by biotesting method]. Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems, No. 3 (27), pp. 127–143 (in Russian).
8. Ivanyutin, N. M., Podovalova, S. V. (2018). Rezultaty kompleksnogo ekologicheskogo monitoringa reki Slavyanka [Complex environmental monitoring results of the Slavyanka River]. Puti povysheniya effektivnosti oroshayemogo zemledeliya [Methods to improve the efficiency of irrigated agriculture], No. 1 (69), pp. 34–42 (in Russian).
9. Ministry of Agriculture of the Russian Federation (2016). Prikaz No. 552 ot 13.12.2016 “Ob utverzhdenii normativov kachestva vody vodnykh obyektov rybokhozyaystvennogo znacheniya, v tom chisle normativov predelno dopustimykh kontsentratsiy vrednykh veshchestv v vodakh vodnykh obyektov rybokhozyaystvennogo znacheniya [Order No. 552 dd. 13.12.2016 “Concerning approval of water quality standards for fishery water bodies, including maximum allowable concentrations of hazardous substances in waters of fishery water bodies”]. Moscow: Ministry of Agriculture of the Russian Federation, 153 p. (in Russian).
10. Chief Public Health Officer of the Russian Federation (2003). SanPiN 2.1.4.1175-02. Gigiyenicheskiye trebovaniya k kachestvu vody netsentralizovannogo vodosnabzheniya. Sanitarnaya okhrana istochnikov [Sanitary Rules and Regulations SanPiN 2.1.4.1175-02. Hygienic requirements for water quality of non-centralized water supply systems. Sanitary protection of sources]. Moscow: Ministry of Health of the Russian Federation, 20 p. (in Russian).
11. State Committee on Sanitary and Epidemiological Surveillance of the Russian Federation (1997). SanPiN 2.1.7.573-96. Gigiyenicheskiye trebovaniya k ispolzovaniyu stochnykh vod i ikh osadkov dlya orosheniya i udobreniya [Sanitary Rules and Regulations SanPiN 2.1.7.573-96. Hygienic requirements for wastewater and sewage sludge which is used for land irrigation and fertilization]. Moscow: Ministry of Health of the Russian Federation, 55 p. (in Russian).
12. All-Russian Research Center for Standardization, Information and Certification of Raw Materials, Materials and Substances (2015). GOST 32627–2014. Metody ispytaniy khimicheskoy produktsii, predstavlyayushchey opasnost dlya okruzhayushchey sredy. Nazemnyye rasteniya. Ispytaniye na fitotoksichnost [State Standard GOST 32627–2014. Testing of chemicals of environmental hazard. Terrestrial plant test: vegetative vigour test]. Moscow: Standartinform, 20 p. (in Russian).
13. Hydrochemical Institute (2016). RD 52.24.309-2016. Organizatsiya i provedeniye rezhimnykh nablyudeniy za sostoyaniyem i zagryazneniyem poverkhnostnykh vod sushi [Regulatory Document RD 52.24.309-2016. Organization and implementation of monitoring observations of the state and pollution of land surface waters]. Rostov-on-Don: Hydrochemical Institute, 100 p. (in Russian).
14. Timchenko, Z. V. (2002). Vodnyye resursy i ekologicheskoye sostoyaniye malykh rek Kryma [Water resources and ecological state of minor rivers in Crimea]. Simferopol: Dolya, 152 p. (in Russian).
15. Shabanov, V. V., Markin, V. N. (2014). Metodika ekologo-vodokhozyaystvennoy otsenki vodnykh obyektov [Method of ecological and water economic assessment of water bodies]. Monograph. Moscow: Russian State Agrarian University — Moscow Timiryazev Agricultural Academy, 166 p. (in Russian).
16. Hydrochemical Institute (2002). RD 52.24.643-2002. Metodicheskiye ukazaniya. Metod kompleksnoy otsenki stepeni zagryaznennosti poverkhnostnykh vod po gidrokhimicheskim pokazatelyam [Regulatory Document RD 52.24.643-2002. Methodical guidelies. Method of comprehensive assessment of the pollution rate of surface waters using hydrochemical indicators]. Saint Petersburg: Gidrometeoizdat, 50 p. (in Russian).
17. Lopareva, T. Ya., Sharipova, O. A. (2013). Otsenka kachestva vody ozera Balkhash soglasno kompleksnym indeksam zagryazneniya [Estimation of the Balkhash Lake water quality by complex indexes of pollution]. Hydrometeorology and Ecology, No. 1 (68), pp. 145–149 (in Russian).
18. Dan, E. L., Kapustin, A. E. (2016). Indeks zagryazneniya vody kak pokazatel ekologicheskogo sostoyaniya vodoyemov g. Mariupolya [Water pollution index as an indicator of the ecological state of Mariupol water bodies]. In: Aktualnyye problemy sovremennoy nauki. Sbornik tezisov nauchnykh rabot XIV Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Actual Problems of Modern Science: Abstracts of XІV International Scientific-Practical Conference]. Kiev: International Scientific Center, pp. 28–30 (in Russian).
19. Klepov, V. I., Ragulina, I. V. (2017). Otsenka kachestva vodnykh resursov v verkhney chasti basseyna reki Moskvy [Qualitative assessment of water resources in the upper part of the Moscow River basin]. Environmental Engineering, No. 3, pp. 14–21 (in Russian).
20. Smirnov, Yu. D., Suchkova, M. V. (2017). Kompleksnaya otsenka ekologicheskogo sostoyaniya vod Murinskogo ruchya v g. Sankt-Peterburge [A complex assessment of the ecological condition of waters Murinsky Creek]. Water and Ecology, No. 3 (71), pp. 35–48 (in Russian).
21. Dvurechenskaya, S. Ya., Bulycheva, T. M. (2017). Opredeleniye kachestva vody vodokhranilishcha po integralnym pokazatelyam v periody raznoy vodnosti [Determination of the water quality of the reservoir by an integral indicators in different periods of water content]. Water and Ecology, No. 1 (69), pp. 44–53 (in Russian).

Orlov A.S., Brovko O.S., Zubov I.N.ASSESSMENT OF THE INTERFERING EFFECT OF HUMIC SUBSTANCES ON THE ACCURACY OF LIGNOSULFONATES DETERMINATION IN AQUEOUS MEDIA
DOI: 10.23968/2305-3488.2018.23.4.20-26

An experimental assessment of the accuracy of technical lignosulfonates’ determination in aqueous solutions is performed in the article. The determination was carried out using the Pearl-Benson method. The interfering effect of high-molecular components of the natural background of the reservoir receiving lignosulfonate-containing waste waters is described. It is shown that the presence of aromatic compounds (in particular, humic acids) in water bodies can introduce a significant error in the determined concentrations of technical lignins (lignosulfonates). Such error can reach 50%. The optimal value of the analytical wavelength (430 nm) for spectral identification of lignosulfonic acids in natural and waste waters rich in compounds of aromatic nature is experimentally justified. The coefficients of sensitivity and selectivity for the Pearl-Benson method regarding the analyzed components are calculated. The calculations show that the method is sensitive and highly selective to lignosulfonates in the presence of humic acids. It is also demonstrated that the photometric method of determining the content of lignosulfonates is applicable for monitoring of multicomponent aqueous media in limited ranges of analyte and natural impurities’ concentrations.
Key words: lignosulfonates, humic substances, Pearl-Benson method, natural waters, waste waters.
References: 1. Peresypkin, V. I., Romankevich, Ye. A. (2010). Biogeokhimiya lignina [Lingin biogeochemistry]. Moscow: GEOS, 340 p. (in Russian).
2. Baykova, I. S., Shtamm, Ye. V., Skyrlatov, Yu. I., Shvydky, V. O., Vichutinskaya, Ye. V. (2015). Priroda toksicheskogo vozdeystviya stochnykh vod predpriyatiy tsellyulozno-bumazhnogo proizvodstva na vodnye ekosistemy [Nature of pulp-and-paper wastewater toxic effect on water ecosystems]. Russian Journal of Physical Chemistry B: Focus on Physics, vol. 34, No. 6, pp. 22–29 (in Russian).
3. Deyneko I. P. (2012). Utilizatsiya ligninov: dostizheniya, problemy i perspektivy [Disposal of lignins: achievements, problems and prospects]. Chemistry of Plant Raw Material, No. 1, pp. 5–20. (in Russian).
4. Bogomolov, B. D., Sapotnisky, S. A. (ed.) (1989). Pererabotka sulfatnogo i sulfitnogo shchelokov [Processing of sulfate and sulfite liquors]. Moscow: Lesnaya Promyshlennost, 360 p. (in Russian).
5. Levandovskaya, T. V. (2008). Khimicheskaya pererabotka rastitelnogo syrya [Chemical processing of plant raw materials]. Arkhangelsk: Pomor University, 97 p. (in Russian).
6. Trufanova, M. V., Parfenova, L. N., Yarygina, O. N. (2010). Surfactant properties of lignosulfonates. Russian Journal of Applied Chemistry, vol. 83, issue 6, pp. 1096–1098. https://doi.org/10.1134/S1070427210060352
7. Selyanina, S. B., Afanasiev, N. I., Teltevskaya, S. Ye., Selivanova, N. V. (2007). Vliyaniye lignosulfonatov na razrusheniye ligno-tallovoy emulsii [Influence of lignosulphonates on lignin-tall emulsion destruction]. Vestnik Pomorskogo Universiteta, ser. “Yestestvennye i tochnye nauki”, issue 1 (11), pp. 88–93 (in Russian).
8. Federal Center for Analysis and Evaluation of Anthropogenic Impact (2011). PND F 14.1:2.216-06. Kolichestvenny khimichesky analiz vod. Metodika izmereniy massovoy kontsentratsii ligninsulfonovykh (lignosulfonovykh) kislot i ikh soley v poverkhnostnykh prirodnykh i stochnykh vodakh fotometricheskim metodom [Environmental Regulatory Document PND F 14.1:2.216-06. Quantitative chemical analysis of water. Methodology for measuring the mass fraction of ligninsulfonic (lignosulfonic) acids and their salts in surface natural and waste waters using the photometric method]. Moscow: Federal Service for Supervision of Natural Resources Management, 18 p. (in Russian).
9. The Ust-Ilimsk branch of Ilim Group (2009). Metodika vypolneniya izmereniy massovoy kontsentratsii lignina sulfatnogo v probakh prirodnykh poverkhnostnykh, prirodnykh podzemnykh i stochnykh vod fotometricheskim metodom [Methodology for measuring the mass fraction of sulfate lignin in samples of natural surface, natural underground and waste waters using the photometric method] (Certificate No. 224.01.03.033/209). Ust-Ilimsk: Ilim Group, 11 p. (in Russian).
10. Khabarov, Yu. G., Pesyakova, L. A. (2008). Analiticheskaya khimiya lignina [Analytical chemistry of lignin]. Monograph. Arkhangelsk: Arkhangelsk State Technical University, 172 p. (in Russian).
11. Brovko, O. S., Orlov, A. S., Zubov, I. N., Parfenova. L. N. (2016). Otsenka meshayushchego vliyaniya soyedineniy aromaticheskoy prirody na tochnost opredeleniya ligninnykh veshchestv v vodnykh sredakh [Evaluation of the effect of interfering compounds of aromatic nature on the accuracy of the lignin compounds detection in aqueous mediums]. Water: Chemistry and Ecology, No. 1 (91), pp. 62–68 (in Russian).
12. Valkov, V. F., Kazeyev, K. Sh., Kolesnikov, S. I. (2004). Pochvovedeniye [Soil science]. Rostov-on-Don: MarT Publishing Center, 496 p. (in Russian).
13. Popov, A. I. (2004). Guminovye veshchestva: svoystva, stroyeniye, obrazovaniye [Humic substances: properties, structure, formation]. Saint Petersburg: Publishing House of the Saint Petersburg State University, 248 p. (in Russian).
14. Orlov, D. S., Sadovnikova, L. K., Sukhanova, N. I. (2005). Khimiya pochv: uchebnik [Soil chemistry: textbook]. Moscow: Vysshaya Shkola, 558 p. (in Russian).
15. Kosov, V. I. (ed.) (2007). Torf. Resursy, tekhnologii, geoekologiya [Peat. Resources, technologies, geoecology]. Moscow: Nauka, 452 p. (in Russian).
16. Orlov, A. S. et al. (2015). Issledovaniye meshayushchego vliyaniya soyedineniy aromaticheskoy prirody na tochnost opredeleniya ligninnykh veshchestv po metodu Pirla-Bensona [Studies of the interfering effect of compounds of aromatic nature on the accuracy of the lignin compounds’ detection according to the Pearl-Benson method]. Materialy dokladov V Mezhdunarodnoy molodyozhnoy nauchnoy konferentsii “Ekologiya-2015” [Proceedings of the 5th International Scientific Youth Conference “Ecology 2015”]. Arkhangelsk: Federal State Budgetary Institution of Science Institute of Ecological Problems of the North of Ural Branch of the Russian Academy of Sciences [Federalnoye gosudarstvennoye byudzhetnoye uchrezhdeniye nauki Institut ekologicheskikh problem Severa Uralskogo otdeleniya Rossiyskoy akademii nauk], pp. 39–40 (in Russian).

Fedorov S. V., Stolbikhin Iu. V., Novikova A. M.MODELLING A GROUP OF RESERVOIRS AT A WATER PURFICATION PLANT SITE
DOI: 10.23968/2305-3488.2018.23.4.27-33

The paper considers a method of creating an integrated hydraulic model of a water supply system, including a group of reservoirs with piping, a second lift pumping station, pressure water conduits and a city water supply network. The model was built in the EPANET 2.0 program. This temporary model allows considering water consumption irregularity and assessing changes of water levels in reservoirs, changes of pressure in assemblies, and flow distribution at network sections. Main stages of model designing are described, and a method of accounting for overflow in reservoirs is presented. The purpose of the research is to create a hydraulic model of a water supply system in the EPANET 2.0 program, which would allow measuring water levels in fresh water tanks (reservoirs), taking into account the changing water consumption in a settlement, and assess the mutual functioning of reservoirs. Based on model calculations, the data provided by the organization maintaining the facility in operation are confirmed, recommendations on optimization of system performance are made. The practical relevance of the research lies in the fact that the developed approach allows solving similar problems related to engineering of water supply systems at design companies and operating organizations.
Key words: EPANET 2.0, hydraulic model, fresh water tank, water consumption model, modelling, water supply.
References: 1. Rodin N. V., Troshkova E. A., Grigoruk A. N., Bychkov D. A. (2014). Rekonstruktsiya skorykh filtrov na vodoprovodnykh ochistnykh sooruzheniyakh g. Tyumeni [Reconstruction of rapid sand filters at the Velizhany water treatment facilities of Tumen]. Water Supply and Sanitary Technique, No. 6, pp. 25–31. (in Russian).
2. Shcherbakov V. I., Drozdov E. V., Pomogaeva V. V. (2013). Problemy sistem vodosnabzheniya malykh gorodov i selskikh poseleniy [Problems of systems of water supply small cities and rural settlements]. The Scientific Newsletter of the Voronezh State University of Architecture and Civil Engineering. High-tech Solutions. Ecology, No. 1, pp. 38–42 (in Russian).
3. Danilova E. V. (2011). Vodokanalu g. Chistopolya — 100 let [The 100th Anniversary of Tchistopol Vodokanal]. Water Supply and Sanitary Technique, No. 11, pp. 59–63 (in Russian).
4. Ministry of Regional Development of the Russian Federation (2011). SP 31.13330.2012. Svod pravil. Vodosnabzheniye. Naruzhniye seti i sooruzheniya [Regulations SP 31.13330.2012. Water supply. Pipelines and potable water treatment plants]. Moscow: Ministry of the Regional Development of the Russian Federation, 123 p. (in Russian).
5. Rimos (2018). Nasosy dvukhstoronnego vkhoda D 2000-100-2 [D 2000-100-2 double entry pumps]. Available at: http://www.rimos.ru/catalog/pump/12739 (in Russian).
6. Vasilyev V. M., Fyodorov S. V., Kudryavtsev A. V. (2017). Nasosy i nasosniye stantsii: uchebnoye posobiye. Ch. 1 [Pumps and pumping stations: textbook. Part 1]. Saint Petersburg: Saint Petersburg State University of Architecture and Civil Engineering, 131 p. (in Russian).
7. Rossman L. A. (2000). EPANET 2 Users Manual. Cincinnati: U.S. Environmental Protection Agency, 200 p.
8. EPA (2018). EPANET. Application for modeling drinking water distribution systems. Available at: https://www.epa.gov/water-research/epanet.
9. Xu, Y., Zhang, X-Y. (2012). Research on pressure optimization effect of high level water tank by drinking water network hydraulic models. Procedia Engineering, 31, pp. 958–966. https://doi.org/10.1016/j.proeng.2012.01.1127
10. Mohapatra, S., Sargaonkar, A., Labhasetwar, P. K. (2014). Distribution network assessment using EPANET for intermittent and continuous water supply. Water Resources Management, vol. 28, issue 11, pp. 3745–3759. https://doi.org/10.1007/s11269-014-0707-y
11. Kovalenko, Y., Alvarez, R., Gorev, N., Kodzhespirova, I., Prokhorov, E. (2012). Zero flow problem in the EPANET solver. In: 14th Water Distribution Systems Analysis Conference, WDSA 2012, pp. 168–178.
12. Burger, G., Sitzenfrei, R., Kleidorfer, M., Rauch, W. (2016). Quest for a new solver for EPANET 2. Journal of Water Resources Planning and Management, vol. 142, issue 3, pp. 04015065 1-11. DOI: 10.1061/(ASCE)WR.1943-5452.0000596
13. Gorev, N. B., Kodzhespirova, I. F. (2013). Noniterative implementation of pressure-dependent demands using the hydraulic analysis engine of EPANET 2. Water Resources Management, vol. 27, issue 10, pp. 3623–3630. https://doi.org/10.1007/s11269-013-0369-1
14. Abdy Sayyed, M. A. H., Gupta, R., Tanyimboh, T. T. (2014). Modelling pressure deficient water distribution networks in EPANET. Procedia Engineering, vol. 89, pp. 626–631. https://doi.org/10.1016/j.proeng.2014.11.487
15. Jinesh Babu, K. S., Mohan, S. (2012). Extended period simulation for pressure-deficient water distribution network. Journal of Computing in Civil Engineering, vol. 26, issue 4, pp. 498–505. DOI: 10.1061/(ASCE)CP.1943-5487.0000160
16. Ignatchik, V. S., Sarkisov, S. V., Obvintsev, V. A. (2017). Issledovaniye koeffitsientov chasovoy neravnomernosti vodopotrebleniya [Research of water consumption hour inequality coefficients]. Water and Ecology, No. 2, pp. 27–39 (in Russian).

ECOLOGY

Averyanov V. K., Martyanova A. Yu., Sukhanova I. I.INCREASING EFFICIENCY OF VACUUM CLEANING SYSTEMS’ DESIGN TO REDUCE EMISSIONS IN THE ATMOSPHERE
DOI: 10.23968/2305-3488.2018.23.4.34-41

The article presents results of laboratory and theoretical studies on aerodynamic characteristics of modern vacuum cleaning systems reducing dust concentration both in the air of production premises and in the territory of industrial enterprises. Quantitative and qualitative analyses of dust emission and concentration in the air of construction enterprises’ shops and in the atmosphere are performed. A test unit to study the terminal velocity of the assembly of solid particles typical for enterprises producing dry building mixes and cement is designed. Results of experimental studies to design vacuum cleaning systems for production premises, where production is characterized by formation of wastes and spills, are presented. Based on a three-factor experiment, a regression equation to determine the terminal velocity depending on the diameter, density and mass concentration of particles is obtained. A criterion equation to find the Reynolds number determined on the basis of the terminal velocity of spherical particles is suggested.
Key words: assembly of solid particles, terminal velocity, vacuum cleaning system, criterion equation, Reynolds number.
References: 1. Belyayeva, V. I., Klassen, V. K. (2008). Energosberezheniye i snizheniye vybrosov zagryaznyayushchikh veshchestv pri obzhige tsementnogo klinkera [Energy saving and reduction of pollution emission when firing cement clinker]. Life Safety, No. 6, pp. 26–28 (in Russian).
2. Bretschneider, B., Kurfürst, J., Vashkevich, N., Tubolkin, A. (1989). Okhrana vozdushnogo basseyna ot zagryazneniy: technologiya i kontrol [Air basin protection against pollution: technology and control]. Leningrad: Khimiya, 288 p. (in Russian).
3. Voskresensky, V. Ye. (2008). Systemy pnevmotransporta, pyleulavlivaniya i ventilyatsii na derevoobrabatyvayushchikh predpriyatiyakh. Teoriya i praktika: v 2 t. T. 1: aspiratsiya i transportnye pnevmosystemy [Systems of pneumatic transportation, dust collection and ventilation at woodworking enterprises. Theory and practice: in 2 volumes. Volume 1: aspiration and transport pneumatic systems]. Saint Petersburg: Politekhnika, 430 p. (in Russian).
4. Donat, Ye. V. (1960). Pnevmaticheskaya uborka pyli d tsekhakh promyshlennykh predpriyatiy [Pneumatic dust handling at shops of industrial enterprises]. Moscow: Profizdat, 170 p. (in Russian).
5. Kalinushkin, M. P., Grachyov, Yu. G. (1987). Vakuumnaya pyleuborka na predpriyatiyakh legkoy promyshlennosti [Vacuum dust cleaning at consumer industry enterprises]. Мoscow: Legprombytizdat, 72 p. (in Russian).
6. Kafarov, V. V., Glebov, M. B. (1991). Matematicheskoye modelirovaniye osnovnykh protsessov khimicheskikh proizvodstv: uchebnoye posobiye dlya vuzov [Mathematical modeling of basic processes at chemical production enterprises: study guide for higher education institutions]. Moscow: Vysshaya Shkola, 400 p. (in Russian).
7. Kuznetsov, Yu. M. (2005). Pnevmotransport: teoriya i praktika [Pneumatic transport: theory and practice]. Yekaterinburg: Ural Branch of Russian Academy of Sciences, 61 p. (in Russian).
8. Logachyov, I. N., Logachyov, K. I. (2005). Aerodinamicheskiye osnovy aspiratsii: monografiya [Aerodynamic basics of aspiration. Monograph]. Saint Petersburg: Khimizdat, 659 p. (in Russian).
9. Malevich, I. P., Seryakov, V. S., Mishin, A. V. (1984). Transportirovka i skladirovaniye poroshkoobraznykh stroitelnykh materialov [Transportation and storage of powdered construction materials]. Moscow: Stroyizdat, 184 p. (in Russian).
10. Martianova, A. Yu., Sukhanova, I. I. (2015). Opredeleniye skorosti vitaniya monodispersnykh stroitelnykh materialov po danny eksperimentalnykh issledovaniy [Determination the soaring speed of monodisperse building materials according to experimental study results]. Bulletin of Civil Engineers (Vestnik razhdanskikh ingenerov), No. 5 (52), pp. 186–190 (in Russian).
11. Martianova, A. Yu. (2017). Sovershenstvovaniye metodov raschyota vakuumnykh system obespylivaniya na predpriyatiyakh po proizvodstvu tsementa i sukhikh stroitelnykh smesey [Improving methods for design of vacuum systems for de-dusting at enterprises producing cement and dry building mixes]. PhD Thesis in Engineering. Saint Petersburg: Saint Petersburg State University of Architecture and Civil Engineering, 192 p. (in Russian).
12. Mikusky, V. G., Kupriyanov, V. N., Kozlov, V. V., Khrulyov, V. M., Gorchakov, V. I., Sakharov, G. P., Orentlikher, L. P., Rakhimov, R. Z. (2007). Stroitelnye materialy. Materialovedeniye. Tekhnologiya konstruktsionnykh materialov [Construction materials. Materials engineering. Construction materials engineering]. Moscow: ASV, 520 p. (in Russian).
13. Minko, V. A. (1981). Obespylivaniye tekhnologicheskikh protsessov proizvodstva stroitelnykh materialov [De-dusting in processes of construction materials’ production]. Voronezh: Publishing House of the Voronezh State University, 176 p. (in Russian).
14. Polonsky, V. M. (2006). Okhrana vozdushnogo basseyna zavodov stroitelnoy industrii: uchebnoye posobiye [Protection of the air basin at construction plants]. Samara: Samara State University of Architecture and Civil Engineering, 200 p. (in Russian).
15. Neykov, O. D., Logachyov, I. N. (1981). Aspiratsiya i obespylivaniye vozdukha pri proizvodstve poroshkov [Air aspiration and de-dusting in powder manufacturing]. 2nd edition. Moscow: Metallurgiya, 192 p. (in Russian).
16. Polushkin, V. I., Sitnikov, E. A., Sukhanova, I. I. (2008). Pnevmaticheskaya pyleuborka v proizvodstvennykh pomeshcheniyakh [Pneumatic dust handling at industrial facilities]. Life Safety, No, 5, pp. 23–27 (in Russian).
17. Razumov, I. M. (1979). Pnevmo- i gidrotransport v khimicheskoy promyshlennosty Seriya “Protsessy i apparaty khimicheskoy i neftekhimicheskoy tekhnologii” [Pneumatic and hydraulic transport in the chemical industry. Series “Processes and machinery of chemical and petroleum engineering). Moscow: Khimiya, 248 p. (in Russian).
18. Sotnikov, A. G. (2007). Protsessy, apparaty i sistemy konditsionirovaniya vozdukha i ventilyatsii. Teoriya, tekhnika i proektirovaniye na rubezhe stoletiy [Processes, devices and systems of air conditioning and ventilation. Theory, engineering and design at the turn of the century], vol. II, part 2. Saint Petersburg: AT-Publishing, 512 p. (in Russian).
19. Sugak, Ye. V., Voynov, N. A., Nikolayev, N. A. (1999). Ochistka gazovykh vybrosov v apparatakh s intensivnymy gidrodinamicheskimi rezhimami [Treatment of gas emissions in devices with intense hydrodynamic modes]. Kazan: Shkola Printing and Publications Center, 224 p. (in Russian).
20. Goodfellow, H. D., Tahti, E. (2001). Industrial ventilation design guidebook. San-Diego, CA: Academic Press, 1519 p.
21. Tiu.ru (2018). Neuero LLC. Available at: http://neuero.tiu.ru/

Asonov A. M., Ilyasov O. R., Borisovа G. M., Kholopov Yu. A.ECOLOGICAL AND ECONOMIC EFFICIENCY OF MODERN TECHNOLOGIES FOR TREATMENT OF SURFACE RUNOFF FROM RAILWAY STATIONS AND TRACKS
DOI: 10.23968/2305-3488.2018.23.4.42-50

Causes of surface water pollution with oil products, heavy metals and other pollutants coming from railway transport facilities are considered in the article. It is noted that this is often due to violations in handling petroleum products, lack of measures and special means to prevent leaks and spills, as well as surface runoff affecting railway tracks. Fuel depots and objects of past (accumulated) environmental damage are particularly dangerous. In the meantime, small rivers represent water bodies most vulnerable to external effects, and large rivers accumulate the total pollution of catchment areas. Given the compact arrangement of potentially hazardous facilities (depots, stations) and their proximity to natural water bodies, significant investments are required for construction of stationary treatment facilities. For instance, in the territory of the repair locomotive depot Bugulma-Gruzovaya, construction of treatment facilities based on the ECO-LS-10/6 complex for treatment of storm and snowmelt waste waters required significant investments and allowed transferring waste waters in the amount of 26.7 thousand m3/year from the category of “insufficiently treated” to the category of “regulatory clean”, and mitigating risks of possible compensation for damage caused to the environment and the water body (up to 900 thousand rubles/year). Ecological and economic efficiency of using the accumulative phytofilter providing several stages of treatment based on physical and chemical methods (sedimentation pond, thin-layer sedimentation tank) complemented by destruction and disposal of contamination by higher aquatic plants and microbiota in the growing season, is shown. Filter strips (as components of railway embankments) provide 98.5–99.0% effect of cleaning from oil with the annual prevented environmental damage regarding the considered section of the embankment of 8,094.7 thousand rubles.
Key words: surface runoff, treatment technologies, railway embankment, oil products, heavy metals, ecological and economic efficiency, accumulative phytofilter, filter strip.
References: 1. Alekseev, M. I., Kurganov, A. M. (2000). Organizatsiya otvedeniya poverkhnostnogo (dozhdevogo i talogo) stoka s urbanizirovannyh territoriy [Organization of surface (rain and snowmelt) runoff removal from urban areas]. Saint Petersburg: Saint Petersburg State University of Architecture and Civil Engineering, 352 p. (in Russian).
2. Anfilofev, B. A., Baranova, M. N., Vasilieva, D. I., Shimanchik, I. P., Kholopov, Yu. A. (2018). Ekologo-ekonomicheskiye problemy effektivnogo ispolzovanija gorodskikh zemel s nakoplennym ekologicheskim ushcherbom [Ecological and economic problems urban land with accumulated environmental damage effective use]. Ecology and Industry of Russia, vol. 22, No. 7, pp. 59–65. DOI: 10.18412/1816-0395-2018-7-59-65 (in Russian).
3. Asonov, A. M., Ilyasov O. R. (1998). Fitofiltr dlya ochistki stochnykh vod [Phytofilter for sewage treatment]. Patent RU2149836C1 (in Russian).
4. Asonov, A. M., Ilyasov, O. R., Borisova, G. M. (2014). Filtruyushchaha polosa v sostave zheleznodorozhnoy nasypi [Filter strip as a part of railway embankments]. Transport of the Urals, No. 3 (42), pp. 73–77 (in Russian).
5. Asonov, A. M., Kovalyov, D. O. (2014). Zashchita landshafta ot zagryazneniya poverkhnostnym stokom s zheleznodorozhnoy nasypi [Protection of landscape against pollution with surface drain from railway bank]. Innotrans, No. 3 (13), pp. 16–19 (in Russian).
6. Rozenberg, G. S. (2011). Volzhsky basseyn. Ustoychivoye razvitiye: opyt, problemy, perspektivy [Volga basin. Sustainable development: experience, problems, prospects]. Moscow: Institute of Sustainable Development of the Civic Chamber of the Russian Federation. Center for Russian Environmental Policy, 104 p. (in Russian).
7. Gunkova, A. G., Kholopov, Yu. A. (2017). Uluchsheniye ekologo-ekonomicheskikh pokazateley predpriyatiya na osnove vnedreniya nailuchshikh dostupnykh tekhnologiy [Improving the ecological and economic indices of the company on the basis of the best available techniques]. Science Journal of Volgograd State University. Global Economic System, vol. 19, No. 3, pp. 235–242. DOI: 10.15688/jvolsu3.2017.3.22 (in Russian).
8. Druzhina, N. A., Vasilieva, D. I., Shimanchik, I. P., Kholopov, Yu. A. (2017). Uchyot proshlogo (nakoplennogo) ekologicheskogo ushcherba v prirodookhrannoy rabote OAO “RZhD” [Taking account of environmental damage in the environmental protection activities of JSC Russian Railways]. Samara Journal of Science, vol. 6, No. 1 (18), pp. 27–32 (in Russian).
9. Druzhina, N. A., Chelnokov, V. N., Kholopov, Yu. A. (2016). Ispolzovaniye sovremennykh tekhnologiy dlya organizatsii priyoma i ochistki livnevykh i talykh stochnykh vod s territorii remontnogo lokomotivnogo depo Bugulma-Gruzovaya [The use of modern technologies for collection and treatment of stormwater and snowmelt wastewater from the territory of the repair of locomotive depot Bugulma-Gruzovaya]. Nauka i obrazovaniye transportu, No. 2, pp. 128–130 (in Russian).
10. Zinchenko, T. D., Rozenberg, G. S. (2012). Bolshiye problemy malykh rek [Big problems of small rivers]. Samarskaya Luka: problemy regionalnoy i globalnoy ekologii, vol. 21, No. 4, pp. 207–213 (in Russian).
11. Inchagov, A. D. (2018). Sbros stochnykh vod na vodosbornye ploshchadi: ni zapreta, ni razresheniya [Wastewater discharges in the watershed: neither prohibition, nor permission]. Industrial Ecology (Russia), No. 6, pp. 64–69 (in Russian).
12. Koronkevich, N. I., Dolgov, S. V. (2017). Stok s vodosbora kak istochnik diffuznogo zagryazneniya rek [The runoff from a watershed as a source of diffuse river pollution]. Water and Ecology, No. 4 (72), pp. 103–110. DOI: 10.23968/2305-3488.2017.22.4.103-110 (in Russian).
13. Lipkind, T. A. (2006). Zashchita vodnykh obyektov ot zagryazneniya uglevodorodami poverkhnostnogo stoka predpriyatiy zheleznodorozhnogo transporta [Protection of water bodies against pollution with hydrocarbons of surface runoff from railway transport enterprises]. Water Sector of Russia: Problems, Technologies, Management, No. 3, pp. 86–92 (in Russian).
14. Manuilov, M. B., Moskovkin, V. M. (2016). Vliyaniye poverkhnostnogo stoka (dozhdevykh i talykh vod) na ekologicheskuyu i tekhnogennuyu situatsiyu v gorodakh [Influence of the surface flow (rainwater and meltwater) on the ecological and industrial situation in cities]. Water and Ecology, No. 2 (66), pp. 35–47 (in Russian).
15. Ministry of Natural Resources and Environment of the Russian Federation (2009). Metodika ischisleniya razmera vreda, prichinyonnogo vodnym obyektam vsledstviye narusheniya vodnogo zakonodatelstva [Methods of calculating the amount of damage caused to water bodies due to violation of water legislation]. Moscow: Ministry of Natural Resources and Environment of the Russian Federation, 35 p. (in Russian).
16. Novikova, O. K., Gruzinova, V. L., Prishchepov, A. O. (2017). Otsenka poverhnostnykh stochnykh vod s zheleznodorozhnykh putey [Assessment of surface wastewater from railroad tracks]. Nauka i obrazovaniye transportu, vol. 2, pp. 68–69. (in Russian).
17. Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (2018). O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiyskoy Federatsii v 2017 godu: gosudarstvenny doklad [On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2017: national report]. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 268 p. (in Russian).
18. Petrova, N. (2011). Ochistka poverkhnostnogo stoka zheleznodorozhnoy stantsii [Treatment of surface runoff from railway stations]. Plumbing, Heating and Air Conditioning, No. 3 (111), pp. 22–23 (in Russian).
19. Strelkov, A. K., Teplykh S. Yu., Gorshkalev, P. A. (2017). Tekhnologicheskiye skhemy sbora, otvedeniya i ochistki poverkhnostnykh stochnykh vod predpriyatiy zheleznodorozhnogo transporta [Technological schemes of collection, disposal and treatment of surface waste water of railway enterprises]. Industrial and Civil Engineering, No. 3, pp. 73–78 (in Russian). 20. Strelkov, A. K., Teplykh, S. Yu., Gorshkalev, P. A., Sargsyan, A. M. (2013). Ekologicheskiye aspekty vozdeystviya poverkhnostnykh stochnykh vod s zheleznodorozhnykh stantsiy [Environmental aspects of the impact of surface wastewater from railway stations]. Vestnik SGASU. Town Planning and Architecture, No. S4 (13), pp. 83–88. DOI: 10.17673/Vestnik.2013.S4.23 (in Russian).
21. Teplykh, S. Yu., Sargsyan, A. M. (2012). Vliyaniye poverkhnostnogo stoka s putey na vodnye obyekty [Influence of surface runoff from railway tracks on water bodies]. Railway Track and Facilities, No. 5, pp. 27–29 (in Russian).
22. RG.ru (2011). Federalny zakon ot 7 dekabrya 2011 g. No. 416-FZ “O vodosnabzhenii i vodootvedenii” [Federal Law No. 416-FZ dd. December 7, 2011 “On water supply and discharge”]. Available at: https://rg.ru/2011/12/08/voda-site-dok.html (in Russian).
23. Khripchenko, T. A., Kholopov, Yu. A. (2014). Toplivnye sklady kak obyekty potentsialnoy opasnosti avariynykh situatsiy na zheleznodorozhnom transporte [Fuel depots as objects of potential emergency situations in railway transport]. In: Perelygin, Yu. P. (ed.) Ekologicheskaya bezopasnost regionov Rossii i risk ot tekhnogennykh avariy i katastrof. Sbornik statey XIV Mezhdunarodnoy nauchno-prakticheskoy konferentii [Ecological safety of Russian regions and risks of industrial disasters. Proceedings of the 14th International Scientific and Practical Conference]. Penza: Volga house of knowledge, pp. 100–103 (in Russian).
24. Yashin, I. M., Vasenev, I. I., Gareeva, I. V., Chernikov, V. A. (2015). Ekologichesky monitoring vod Moskvy-reki v stolichnom megapolise [Ecological monitoring of the Moskva river waters in metropolitan area]. Izvestiya of Timiryazev Agricultural Academy, No. 5, pp. 8–25 (in Russian).
25. Anfilofev, B. A., Vasilieva, D. I., Shimanchik, I. P., Kholopov, Yu. A. (2017). Objects of accumulated environmental damage as a factor of reducing ecological and economic efficiency of urbanized territories use. In: Proceedings of the Sixth International Environmental Congress (Eighth International Scientific Conference) “Ecology and Life Protection of Industrial-Transport Complexes” ELPIT 2017, 20–24 September, 2017, Samara–Togliatti, Russia: Edition ELPIT, Publishing House of Samara Scientific Center, pp. 7–14.

Karpenko N. P., Suprun V. A.ASSESSMENT OF ENVIRONMENTAL DAMAGE UPON DISCHARGE OF MINE WATERS OF THE GOLD ORE DEPOSIT INTO THE BEREZOVKA RIVER
DOI: 10.23968/2305-3488.2018.23.4.51-60

The article discusses results of studying geo-ecological conditions for the development of the Berezovsky gold ore deposit in the Sverdlovsk Region and its impact on the environment. It is established that environmental deterioration is closely related to the long-term operation of the deposit and discharge of large amounts of mine waters into surface water bodies. A survey of mine waters was performed, the composition and concentrations of pollutants, including heavy metals, petroleum products and suspended particles, were studied. To assess the environmental damage caused to the Berezovka River, main theoretical and methodological provisions of the theory of analysis of geo-ecological risks and assessment of environmental damage caused to the water body as a result of discharging contaminated mine waters were used. A quantitative assessment of the environmental and economic damage caused to the Berezovka River as a result of discharging poor-quality mine waters during the operation of the Berezovsky mine was carried out. Practical significance of the research lies in the fact that the calculated environmental and economic damage can be used to develop compensatory environmental measures for implementation of innovative technologies of deep mine-water treatment, the use of which will provide drinking water for the population and improve the environmental situation in the region under consideration.
Key words: gold ore deposit, environment, geo-ecological risk, mine waters, water inflows, environmental and economic damage, drinking water supply, environmental technologies.
References: 1. Borodaevsky, N. I. Borodaevskaya, M. B. (1947). Beryozovskoye rudnoye pole [Berezovsky ore field]. Moscow: Metallurgizdat, 264 p. (in Russian).
2. Voytinskaya, Ye. Ye., Chechviy, T. S., Shaydurova, N. A. (2008). Pod znakom zolota: Beryozovsky rudnik, Proshloye, nastoyashcheye, budushcheye: XVIII — nachalo XXI veka [Under the sign of gold: Berezovsky mine. The past, the present, and the future: 18th – the beginning of the 21st centuries]. Yekaterinburg: Sokrat, 60 p. (in Russian).
3. Goldberg V. M., Gazda, V. I. (1984). Gidrogeologicheskiye osnovy okhrany podzemnykh vod ot zagryazneniya [Hydrogeological fundamentals of groundwater protection against pollution]. Moscow: Nedra, 262 p. (in Russian).
4. Zhabin, V. F., Karpenko, N. P., Lomakin, I. M. (2013). Filtratsionnaya raschyotnaya skhematizatsiya tonkosloistykh sred i nadyozhnost inzhenernykh resheniy [Filtration design schematization of thin-layer media and reliability of engineering decisions]. Environmental Engineering, No. 2, pp. 65–71 (in Russian).
5. Zhabin, V. F., Karpenko, N. P., Lomakin, I. M. (2013). Formirovaniye geterogennoy sredy i regulorovaniye rezhima gruntovykh vod v zadachakh prirodoobustroystva [Formation of the heterogeneous environment and regulation of groundwater conditions in tasks of environmental engineering]. Monograph. Moscow: Moscow State University of Environmental Engineering, 208 p. (in Russian).
6. Zemskikh, V. Ye. (2015). Zoloto i lyudi Beryozovskogo rudnika [Gold and men of the Berezovsky mine]. Yekaterinburg: Publishing House of the Ural State Mining University, pp. 39–47 (in Russian).
7. Kalybekov, T. K. (2011). Obosnovaniye vozniknoveniya ekologicheskogo riska pri otkrytoy razrabotke mestorozhdeniy [Substantiation of occurrence of ecological risk at open-cast mining of deposits]. Izvestiya nauchno-tekhnicheskogo obshchestva “KAKHAK”, No. 2 (32), pp. 95–99 (in Russian).
8. Kapustin, V. G. (2010). Geografiya Sverdlovskoy oblasti (Chast 1: Priroda regiona i problemy ekologii): uchebnoye posobiye po kursu “Geografiya Sverdlovskoy oblasti” [Geography of the Sverdlovsk Region (Part 1: Nature of the region and environmental problems): textbook for the course “Geography of the Sverdlovsk Region”]. Yekaterinburg,Sredne-Uralskoe knizhnoe izdatelstvo 223 p. (in Russian).
9. Karpenko, N. P. (2009). Struktura i otsenka geoekologicheskikh riskov [Structure and assessment of geo-ecological risks]. Environmental Engineering, No. 3, pp. 45–50 (in Russian).
10. Karpenko, N. P. (2014). Analiz zashchitnykh svoystv porod zony aeratsii i otsenka zashchishchyonnosti gruntovykh vod v zone sbrosa zagryaznyayushchikh stokov [The analysis of protective properties of the aeration zone and assessment of the ground water protectability in the discharge zone of polluting drainage]. Environmental Engineering, No. 2, pp.70–74 (in Russian).
11. Karpenko, N. P. (2014) Geoekologishesky risk: analiz, otsenki, upravleniye [Geo-ecological risk: analysis, assessment, management]. Monograph: Germany, Palmarium Academic Publishing, 145 p. (in Russian).
12. Karpenko, N. P. (2013). Osnovy diagnostiki formirovaniya negativnykh posledstviy pri antropogennykh nagruzkakh dlya upravleniya geoekologisheskimi riskami [Fundamentals of diagnostics of negative effects’ formation upon anthropogenic loads for management of geo-ecological risks]. In: Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Melioratsiya i problemy vosstanovleniya selskogo khozyaystva v Rossii” [International Scientific and Practical Conference “Land reclamation and problems of agriculture restoration in Russia”] (Kostyakov Readings), March 20–21, 2013. Moscow: Publishing House of the All-Russian Research Institute of Agrochemistry, pp. 289–293 (in Russian).
13. Karpenko, N. P. (2010). Upravleniye tekhnoprirodnymi sistemami na osnove geoekologicheskikh riskov [Management of anthropogenic systems based on geo-ecological risks]. In: XVIII Mezhdunarodnaya konferentsiya “Problemy upravleniya bezopasnostyu slozhnykh system” [18th International Conference “Problems of safety management of complex systems”], December 2010. Moscow: Russian State University for the Humanities, pp. 312–316 (in Russian).
14. Karpenko, N. P., Manukjan, D. A. (2009). Geoekologicheskiye problemy prirodoobustroystva [Geo-ecological problems of environmental engineering]. Environmental Engineering, No. 3, pp. 69–74 (in Russian).
15. Karpenko, N. P., Manukjan, D. A. (2009). Problemy ekologicheskoy bezopasnosti prirodoobustroystva [Problems of environmental safety in environmental engineering]. In: XVII Mezhdunarodnaya konferentsiya “Problemy upravleniya bezopasnostyu slozhnykh system” [17th International Scientific Conference “Problems of safety management of complex systems”], December 2009. Moscow: Russian State University for the Humanities, pp. 256–260 (in Russian).
16. Karpenko, N. P., Manukjan, D. A. (2011). Sistemny podkhod pri otsenke geoekologicheskikh riskov i ekologicheskoy bezopasnosti funktsionirovaniya tekhnoprirodnykh system [System approach in the evaluation of geo-ecological risks and environmental safety of anthropogenic systems’ performance]. In: XIX Mezhdunarodnaya konferentsiya “Problemy upravleniya bezopasnostyu slozhnykh system” [19th International Conference “Problems of safety management of complex systems”], December 2011. Moscow, Russian State University for the Humanities, pp. 263–267 (in Russian).
17. Karpenko, N. P., Suprun, V. A. (2018). Postroyeniye algoritma upravleniya geoekologicheskimi riskami na mestorozhdeniyakh poleznykh iskopayemykh [Construction of an algorithm for the management of geo-ecological risks at mineral deposits]. Eurasian Union of Scientists, No. 12-1 (45), pp. 4–7 (in Russian).
18. Karpenko, N. P., Suprun, V. A. (2018). Perspectivy ispolzovaniya shakhtnykh vod dlya pityevogo vodosnabzheniya na Beryozovskoy zolotorudnoy shakhte “Yuzhnaya” [Prospects for the use of mine waters for drinking water supply at the Berezovskaya gold ore mine “Yuzhnaya”]. In: Mezhdunarodnaya nauchno-prakticheskaya konferentsiya, posvyashchyonnaya 130-letiyu N. I. Vavilova [International Scientific and Practical Conference dedicated to the 130th anniversary of N. I. Vavilov], December 5–7, 2017. Reports of the Timiryazev Agricultural Academy. Issue 290. Part 2. Moscow: Russian State Agrarian University — Moscow Timiryazev Agricultural Academy, pp. 54–56 (in Russian).
19. Karpenko, N. P., Frizena, Ye. V. (2013). Uchyot i upravleniye ekologicheskimi riskami dlya zdorovya i zhizni naseleniya v usloviyakh rosta antropogennykh nagruzok [Accounting and management of ecological risks to health and life of the population under the conditions of increasing anthropogenic loads]. In: Mezhdunarodnaya konferentsiya “Problemy kompleksnogo obustroystva tekhnoprirodnykh system” [International Conference “Problems of integrated development of anthropogenic systems”], April 16–18, 2013. Part IV. Moscow: Moscow State University of Printing Arts, pp. 144–151 (in Russian).
20. Manukjan, D. A., Karpenko, N. P. (2009). Teoriya i metodologiya vedeniya monitoringa tekhnoprirodnykh system [Theory and methodology of monitoring anthropogenic systems]. Monograph. Moscow: Moscow State University of Printing Arts, 307 p. (in Russian).
21. Ministry of Natural Resources and Environment of the Russian Federation (2009). Metodika ischisleniya razmera vreda, prichinyonnogo vodnym obyektam vsledstviye narusheniya vodnogo zakonodatelstva [Methods of calculating the amount of damage caused to water bodies due to violation of water legislation]. Moscow: Ministry of Natural Resources and Environment of the Russian Federation, 35 p. (in Russian).
22. Chief Public Health Officer of the Russian Federation (2002). SanPiN 2.1.4.1110-02. Zony sanitarnoy okhrany istochnikov vodosnabzheniya i vodoprovodov pityevogo naznacheniya [Sanitary Rules and Regulations SanPiN 2.1.4.1110-02. Sanitary protection zones of water supply sources and drinking water supply systems]. Moscow: State Committee on Sanitary and Epidemiological Surveillance of the Russian Federation, 16 p. (in Russian).
23. State System of Sanitary and Epidemiological Standardization of the Russian Federation (1996). SanPiN 2.1.4.559-96. Pityevaya voda. Gigiyenicheskiye trebovaniya k kachestvu vody tsentralizovannykh system pityevogo vodosnabzheniya. Kontrol kachestva [Sanitary Rules and Regulations SanPiN 2.1.4.559-96. Drinking water. Hygienic requirements to water quality of centralized drinking water supply systems. Quality control]. Moscow: State Committee on Sanitary and Epidemiological Surveillance of the Russian Federation, 111 p. (in Russian).
24. Suprun, V. A., Karpenko N. P. (2018). Obsledovaniye shakhtnykh vodopritokov i khimicheskogo sostava shakhtnoy vody na zolotorudnoy shakhte “Yuzhnaya” dlya pityevogo vodosnabzheniya [Survey of mine water inflows and chemical composition of mine water at the gold ore mine “Yuzhnaya” for drinking water supply]. In: 4-ya mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Aktualnye voprosy v nauke i praktike” [4th International Scientific and Practical Conference “Current Issues in Science and Practice (part 4)”]. Ufa: Dendra, pp. 257–263 (in Russian).

Makarova S. V.ECOLOGICAL STATE OF THE SESTRORETSKY RAZLIV RESERVOIR: THE PAST AND THE PRESENT
DOI: 10.23968/2305-3488.2018.23.4.61-69

The Sestroretsky Razliv reservoir is the largest artificial water body in Saint Petersburg, having great environmental, as well as historical and cultural importance. In 1963–2000, it was used as a source of drinking water supply for the town of Sestroretsk. Data on phytoplankton abundance and species composition, characterizing the ecological state of the reservoir in 1993–1998, not published earlier, is presented in the article. During that period, the phytoplankton biomass varied in wide limits (1.3–65.3 mg/l), with seasonal mean values reaching 14.2–18.3 mg/l. The main contribution was made by diatoms and blue-greens (cyanobacteria). The ratio of those algae in the total phytoplankton biomass depended on hydrometeorological conditions and varied from year to year. Water bloom formed by Aphanizomenon flos-aquae cyanobacteria and Microcystis species was regularly noted in July–September. Concentration of chlorophyll a reached 226 µg/l. Based on the obtained results, the Sestroretsky Razliv was characterized as a highly eutrophic water body. It currently maintains the status. The submitted data is important for assessment of negative changes in the ecosystem and development of environmental measures.
Key words: Sestroretsky Razliv, ecological state, phytoplankton, biomass, species composition, eutrophication.
References: 1. Government of Saint Petersburg (2011). Postanovleniye No. 169 ot 15.02.2011 Ob obrazovanii gosudarstvennogo prirodnogo zakaznika regionalnogo znacheniya “Sestroretskoye boloto” [Resolution No. 169 dd. 15.02.2011 Concerning establishment of the state natural reserve of regional significance “Sestroretsk Swamp”] (in Russian).
2. Dmitriev, V. D. (2008). Vodosnabzheniye i vodootvedeniye naselennykh punktov Kurortnogo rayona [Water supply and wastewater disposal in settlements of Kurortny District]. Saint Petersburg: Novyj Zhurnal, 244 p. (in Russian).
3. Stravinskaya, Ye. A. (ed.) (1984). Sokhraneniye ekosistemy vodoema v urbanizirovannom landshafte [Preservation of a natural ecosystem of a reservoir in the urbanized landscape]. Leningrad: Nauka, 144 p. (in Russian).
4. Silina, N. I., Makarova, S. V., Varfolomeyeva, I. N., Litova, T. E., Berezovskaya, I. N., Gronskaya, T. P., Maksimov, A. A. (1996). Sovremennoye ekologicheskoye sostoyaniye Sestroretskogo Razliva [Current ecological state of the Sestroretsky Razliv]. In: Mezhdunarodnoe soveshhanie “Problemy gidrobiologii kontinental'nyh vod i ih malakofauna” [International Conference “Problems of Hydrobiology of Continental Waters and Their Malacofauna”]. Saint Petersburg: Zoological Institute of the Russian Academy of Sciences, pp. 50–51 (in Russian).
5. Vuglinsky, V. S., Gronskaya, T. P., Silina, N. I., Varfolomeeva, I. N., Makarova, S. V. (1998). Ekologicheskoye sostoyaniye vnutrennikh vodoyomov Sankt-Peterburga [Ecological state of Saint Petersburg inland reservoirs]. Prospect and Protection of Mineral Resources, No. 7–8, pp. 44–46 (in Russian).
6. Grigoryev, I. A., Serebritsky, I. A. (ed.) (2017). Rezultaty kompleksnogo ekologicheskogo obsledovaniya ozera Sestroretsky Razliv [Results of an integrated environmental investigation of Sestroretsky Razliv Lake]. In: Okhrana okruzhayushchey sredy, prirodopolzovaniye i obespecheniye ekologicheskoy bezopasnosti v Sankt-Peterburge v 2016 godu [Environmental protection, natural resource management and assurance of environmental safety in Saint Petersburg in 2016]. Saint Petersburg: Sezam-Print, pp. 76–100 (in Russian).
7. Serebritsky, I. A. (ed.) (2017). Issue topic: Sestroretsky Razliv. Okruzhajushhaja sreda Sankt-Peterburga, No. 2 (4), pp. 8–64 (in Russian).
8. Alekseyev, L. P., Zadonskaya, O. V., Dvornikov, V. G., Dubrovskaya, K. A. (2017). Ekologicheskoye sostoyaniye vodookhrannykh zon Sestroretskogo Razliva i ego pritokov [Ecological state of water protection zones of Sestroretsky Razliv and its tributaries]. Okruzhajushhaja sreda Sankt-Peterburga, No. 2 (4), pp. 33–39 (in Russian).
9. Raspopov, I. M. (2010). Vysshaya vodnaya rastitelnost vodokhranilishcha Sestroretsky Razliv v Kurortnom rayone g. Sankt-Peterburga [High aquatic vegetation of the Sestroretsky Razliv reservoir in Kurortny District of Saint Petersburg]. Samarskaya Luka: problemy regionalnoy i globalnoy ekologii, vol. 19, No. 3, pp. 133–139 (in Russian).
10. Abakumov, V. A. (ed.) (1983). Rukovodstvo po metodam gidrobiologicheskogo analiza poverkhnostnykh vod i donnykh otlozheniy [Guide to methods of the hydrobiological analysis of surface waters and bottom sediments]. Leningrad: Gidrometeoizdat, 239 p. (in Russian).
11. Trifonova, I. S., Pavlova, O. A., Afanasyeva, A. L., Stanislavskaya, Ye. V. (2015). Letniy fitoplankton vodokhranilishcha Sestroretsky Razliv po mnogoletnim nablyudeniyam [Summer phytoplankton of Sestroretskiy Razliv on long-term observations]. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, vol. 17, No. 5 (2), pp. 522–526 (in Russian).
12. State Unitary Enterprise “Vodokanal of Saint Petersburg” (2012). Press-release. Available at: www.vodokanal.spb.ru/files/press_reliz/postuplenie_neochiwennyh_stochnyh_vod.doc (in Russian).
13. Voyakina, Ye. Yu., Chernova Ye. N., Russkikh, Ya. V., Zhakovskaya, Z. A. (2015). Sezonnaya dinamika tsianobakteriy i ikh metabolitov v evtrofnykh vodoyomakh g. Sankt-Peterburga [Seasonal dynamics of cyanobacteria and their metabolites in eutrophic water bodies of Saint Petersburg]. In: Mezhdunarodnaya konferentsiya “Aktualnye problemy planktonologii” [International Conference “Topical Issues of Planktology”]. Kaliningrad: Publishing Office of the Kaliningrad State Technical University, pp. 37–38 (in Russian).
14. Neva–Ladoga Basin Water Management Department (2015). Skhema kompleksnogo ispolzovaniya i okhrany vodnykh obyektov (SKIOVO). Kniga 2. Otsenka ekologicheskogo sostoyaniya i klyuchevye problemy basseynov rek i ozyor basseyna Finskogo zaliva (ot granitsy Rossiyskoy Federatsii s Finlyandiey do severnoy granitsy basseyna reki Neva) [Plan of multi-purpose utilization and protection of water bodies. Book 2. Assessment of the ecological state and key issues of river and lake basins of the Gulf of Finland basin (from the border between Russia and Finland to the northern border of the Neva River basin]. Available at: http://www.nord-west-water.ru/upload/skiovo/fz_136/skiovo_fz_136_book_2.pdf (in Russian).
15. Gerasimov, A. V., Golubkov, S. M., Zadonskaya, O. V., Pedchenko, A. P., Pozdnyakov, Sh. R., Reshetov, V. V., Ryabchuk, D. V., Filippov, N. B. (2017). Rekomendatsii po ekologicheskomu ozdorovleniyu ozera Sestroretsky Razliv [Recommendations for environmental improvement of the Sestroretsky Razliv Lake]. Okruzhajushhaja sreda Sankt-Peterburga, No. 2 (4), pp. 62–64 (in Russian).

Olkova A. S., Mahanova E. V.SELECTION OF BIOASSAY FOR ECOLOGICAL RESEARCH OF WATER, POLLUTED BY MINERAL NITROGEN FORMS
DOI: 10.23968/2305-3488.2018.23.4.70-81

The paper presents testing of an algorithm for selecting the most sensitive bioassays based on the example of natural waters pollution with mineral forms of nitrogen. The approach is different in that it compares the informativeness of methods under the conditions of specific pollution, rather than biological species of test organisms. Biodiagnostics of selected toxicants is relevant for many surface and ground waters. The presence of ammonium ions in excess doses indicates fresh pollution and the proximity of a source of pollution. Nitrates without nitrites and ammonium indicate long-standing pollution. Nitrite ions represent a final product of oxidation of nitrogen-containing organic substances. The study consisted of a bioassay of natural water with increasing additions of nitrites, nitrates and ammonium ions. Solutions with one substance (as well as their mixtures) introduced were tested. The sensitivity of bioassays by the mortality of Daphnia magna, Ceriodadhnia affinis, chemotaxis of Paramecium caudatum, changes in the bioluminescence of Escherichia coli was compared. Additives of nitrites and nitrates in the doses of 5 and 10 MPC (maximum permissible concentrations) did not cause the death of more than 50 % D. magna and C. affinis organisms but inhibited the fertility of crustaceans. The maximum toxic effect in the doses of 5 and 10 MPC was established for ammonium ions: the fertility of D. magna decreased by 4.4 times compared to pure water, and for C. affinis those doses were lethal. With a further increase in concentrations of active substances, the sensitivity of crustaceans was ranked by the time of death of all individuals. According to the Ecolum test system (E. coli), effects of mineral forms of nitrogen increased in the following series: (NO2-) < (NO3-) < (NH4+), with nitrates stimulating bioluminescence in all tested doses (from 5 to 100 MPC). The assay for chemotaxis of infusorians P. caudatum was more sensitive than the bacterial bioassay. Mixtures of nitrites and ammonium ions, as well as nitrates and ammonium ions have confirmed those trends. It is shown that mineral forms of nitrogen enhance the effect of each other in the joint presence. A series of bioassay sensitivity was built for separate pollution with nitrate and nitrite ions, as well as integrated pollution with nitrate ions and ammonium ions: bioassay for the mortality of C. affinis > bioassay for the mortality of D. magna > bioassay for changes in chemotaxis of P. caudatum > bioassay to reduce bioluminescence using the Ecolum test system. Upon pollution with ammonium ions or integrated pollution with nitrite ions and ammonium ions, it is recommended to use the following series of bioassays in order of decreasing sensitivity: bioassay for the mortality of C. affinis > bioassay for the mortality of D. magna > bioassay to reduce bioluminescence using the Ecolum test system > bioassay for changes in chemotaxis of P. caudatum.
Key words: bioassay, bioassay sensitivity, water pollution, nitrate ion, nitrite ion, ammonium.
References: 1. Agbalyan, E. V., Khoroshavin, V. Yu., Shinkaruk, E. V. (2015). Otsenka ustoychivosti ozernykh ekosistem Yamalo-Nenetskogo avtonomnogo okruga k kislotnym vypadeniyam [Assessment of the sustainability of the lake ecosystems of Yamal-Nenets Autonomous District to acidic deposition]. UT Research Journal, vol. 1, No. 1 (1), pp. 45–54 (in Russian).
2. Aleksandrova, V. V. (2013). Analiz korrelyatsionnoy zavisimosti vyzhivayеmosti i plodovitosti test-obyеkta Ceriodaphnia affinis s khimicheskim sostavom vody [The analysis of correlation between survival rate & fertility of Ceriodaphnia affinis and chemical composition of water]. Bulletin of Nizhnevartovsk State University, No. 3, pp. 60–63 (in Russian).
3. Ashikhmina, T. Ya., Dabakh, E. V., Kantor, G. Ya., Lemeshko, A. P., Skugoreva, S. G., Adamovich, T. A. (2010). Izucheniyе sostoyaniya prirodnogo kompleksa v zone vliyaniya Kirovo-Chepetskogo khimicheskogo kombinata [Research of the state of the natural complex within the zone of influence of Kirovo-Chepetsk chemical plant]. Theoretical and Applied Ecology, No. 3, pp. 18–26 (in Russian).
4. Vinokhodov, D. O. (2007). Nauchnyе osnovy biotestirovaniya s ispolzovaniyеm infuzoriy [Scientific fundamentals of bioassay using ciliates]. DSc Thesis in Biology. Saint Petersburg: Saint Petersburg State Institute of Technology, 353 p. (in Russian).
5. Kvashnin, S. V., Koshcheeva, G. S. (2006). Zagryazneniyе pityеvoy vody Priishimya mineralnymi soyеdineniyami azota [Pollution of drinking water near the Ishym River with mineral compounds of nitrogen]. Sibirskiy Ekologicheskiy Zhurnal (Siberian Journal of Ecology), vol. 13, No. 5, pp. 685–693 (in Russian).
6. Olkova, A. S. (2018). Aktualnyе napravleniya razvitiya metodologii biotestirovaniya vodnykh sred [Current trends in the development of the methodology of bioassay aquatic environments]. Water and Ecology, No. 2 (74), pp. 40–50 (in Russian).
7. Ministry of Mineral Resources and Environment of the Russian Federation (2010). PND F T 14.1:2:3:4.11-04. T.16.1:2:3:3.8-04. Metodika opredeleniya integralnoy toksichnosti poverkhnostnykh, v tom chisle morskikh, gruntovykh, pityеvykh, stochnykh vod, vodnykh ekstraktov pochv, otkhodov, osadkov stochnykh vod po izmeneniyu bakterialnoy biolyuminestsentsii test-sistemoy “Ekolyum” [Environmental Regulatory Document PND F T 14.1:2:3:4.11-04. T.16.1:2:3:3.8-04. Method for determining the integrated toxicity of surface waters, including marine, ground, drinking, waste waters, water extracts from soils, waste, sewage sludge by changes in bacterial bioluminescence using the Ecolum test-system]. Moscow: Nera-S, 30 p. (in Russian).
8. Federal Agency for Fisheries (2010). Prikaz No. 20 ot 18 yanvarya 2010 g. Ob utverzhdenii normativov kachestva vody vodnykh obyеktov rybokhozyaystvennogo znacheniya, v tom chisle normativov predelno dopustimykh kontsentratsiy vrednykh veshchestv v vodakh vodnykh obyеktov rybokhozyaystvennogo znacheniya [Order No. 20 dd. 18.01.2010. Concerning approval of water quality standards for fishery water bodies, including maximum permissible concentrations of hazardous substances in waters of fishery water bodies]. Moscow: Rosrybolovstvo, 369 p. (in Russian).
9. Akvaros (2007) FR 1.39.2007.03221. Metodika opredeleniya toksichnosti vody i vodnykh vytyazhek iz pochv, osadkov stochnykh vod, otkhodov po smertnosti i izmeneniyu plodovitosti tseriodafniy [Federal Register FR 1.39.2007.03221. Methodology for determining the toxicity of water and water extracts from soils, sewage sludge, and waste by mortality and changes in fertility of Ceriodaphnias]. Moscow: Akvaros, 54 p. (in Russian).
10. Akvaros (2007). FR 1.39.2007.03222. Metodika opredeleniya toksichnosti vody i vodnykh vytyazhek iz pochv, osadkov stochnykh vod, otkhodov po smertnosti i izmeneniyu plodovitosti dafniy [Federal Register FR 1.39.2007.03222. Methodology for determining the toxicity of water and water extracts from soils, sewage sludge, and waste by mortality and changes in fertility of daphnias]. Moscow: Akvaros. 51 p. (in Russian).
11. Spektr-M (2015). FR 1.39.2015.19242. PND F T 16.2:2.2-98. Metodika opredeleniya toksichnosti prob prirodnykh, pityеvykh, khozyaystvenno-pityеvykh, khozyaystvenno-bytovykh stochnykh, ochishchennykh stochnykh, stochnykh, talykh, tekhnologicheskikh vod ekspress-metodom s primeneniyеm pribora serii “Biotester” [Federal Register FR 1.39.2015.19242. Environmental Regulatory Document PND F T 16.2:2.2-98. Methodology for determining the toxicity of samples of natural, drinking, domestic and drinking, household waste, treated sewage, waste, thawed, technological water by the express method using the Biotester device]. Saint Petersburg: SPEKTR-M, 21 p. (in Russian).
12. Khokhryakov, A. V., Studyonok, A. G., Olkhovsky, A. M., Studyonok, G. A. (2005). Kolichestvennaya otsenka vklada vzryvnykh rabot v zagryazneniyе drenazhnykh vod karyеrov soyеdineniyami azota [Quantitative assessment of the contribution of blasting to the pollution of drainage waters of quarries with nitrogen compounds]. News of the Higher Institutions. Mining Journal, No. 6, pp. 29–31 (in Russian).
13. Delkash, M., Al-Faraj, F. A. M., Scholz, M. (2018). Impacts of anthropogenic land use changes on nutrient concentrations in surface waterbodies: a review. Clean – Soil Air Water, vol. 46, issue 5, article No. 1800051. https://doi.org/10.1002/clen.201800051
14. Erratt, K. J., Creed, I. F., Trick, Ch. G. (2018). Comparative effects of ammonium, nitrate and urea on growth and photosynthetic efficiency of three bloom-forming cyanobacteria. Freshwater Biology, vol. 63, issue 7, pp. 626–638. https://doi.org/10.1111/fwb.13099
15. Galloway, J. N. (1995). Acid deposition: perspectives in time and space. Water, Air and Soil Pollution, vol. 85, issue 1, pp. 15–24. https://doi.org/10.1007/BF00483685
16. Hashemi, F., Olesen, J. E., Jabloun, M., Hansen, A. L. (2018). Reducing uncertainty of estimated nitrogen load reductions to aquatic systems through spatially targeting agricultural mitigation measures using groundwater nitrogen reduction. Journal of Environmental Management, vol. 218, pp. 451–464. doi: 10.1016/j.jenvman.2018.04.078
17. Kalinkina, N. M., Berezina, N. A., Sidorova, A. I., Belkina, N. A. Morozov, A. K. (2013). Toxicity bioassay of bottom sediments in large water bodies in Northwestern Russia with the use of crustaceans. Water Resources, vol. 40, issue 6, pp. 657–666. https://doi.org/10.1134/S0097807813060055
18. Ke, X., Bao, Q., Qi, Y., Huang, X., Zhang, H. (2018). Toxicity assessment of sediments from the Liaohe River Protected Area (China) under the influence of ammonia nitrogen, heavy metals and organic contaminants. Environmental Toxicology and Pharmacology, vol. 59, pp. 34–42. doi: 10.1016/j.etap.2018.02.008
19. Olkova, A. S., Kantor, G. Y., Kutyavina, T. I. Ashikhmina, T. Y. (2018). The importance of maintenance conditions of Daphnia magna Straus as a test organism for ecotoxicological analysis. Environmental Toxicology and Chemistry, 37 (2), pp. 376–384. doi: 10.1002/etc.3956
20. Uuemaa, E., Palliser, C. C., Hughes, A. O., Tanner, C. C. (2018). Effectiveness of a natural headwater wetland for reducing agricultural nitrogen loads. Water, vol. 10, issue 3, article No. 287. https://doi.org/10.3390/w10030287
21. Zhang, L., Xiong, D.-M., Li, B., Zhao, Z.-G., Fang, W., Yang, K., Fan, Q.-X. (2012). Toxicity of ammonia and nitrite to yellow catfish (Pelteobagrus fulvidraco). Journal of Applied Ichthyology, vol. 28, issue. 1, pp. 82–86. https://doi.org/10.1111/j.1439-0426.2011.01720.x

Predeina L. M., Khoroshevskaya V. O., Andreev Yu. A., Kotova V. E.MOLYBDENUM INFLUENCE ON PHYTOPLANKTON, BOD5 AND ALKALINE PHOSPHATASE ACTIVITY IN A LABORATORY EXPERIMENT
DOI: 10.23968/2305-3488.2018.23.4.82-91

Molybdenum is one of the few heavy metals that are necessary for the normal functioning of hydrobiocenoses, and at the same time have quite high toxicity. The purpose of this research is to study the effect of additives of the molybdenum anionic form in concentrations ranged from 0.5 to 100 μg/L on phytoplankton, BOD5 and seston alkaline phosphatase activity in a laboratory experiment with natural waters of the Don River. Molybdenum was added as ammonium heptamolybdate (NH4)6Мо7O24·4Н2О. Its effect was noticed in reducing the phytoplankton growth rate and increasing its biomass. In three days after molybdenum was added, the phytoplankton abundance reduced by 11–55% (in all studied concentrations) compared to the control experiment. Blue-green and cryptophyte algae were the least resistant to molybdenum. The phytoplankton biomass increased by 59–94%. The greatest blue-green algae biomass increase (160–180%) was observed when low concentrations of molybdenum (0.5 and 5 μg/L) were added. The green algae biomass increased from 39 to 275% proportionally to the added molybdenum concentrations. Molybdenum did not have a reducing effect on the rate of BOD5. In one day after 0.5 and 5.0 μg/L molybdenum concentrations were added, BOD5 values increased by 15 and 46%, respectively, and in three days — by 24–35% in all studied concentrations. The influence of molybdenum on the alkaline phosphatase activity was noticed in its reduction by 20–30% in two days, and by 55–70% in three days compared to the control experiment. No dependence between the values of the alkaline phosphatase activity and studied molybdenum concentrations was detected. During the experiment, a significant decrease in the ammonium nitrogen concentrations (in all molybdenum concentrations) was established. At the same time, there was no shortage of nitrogen and phosphorus supply for phytoplankton.
Key words: molybdenum, phytoplankton, abundance, biomass, biogenic substances, BOD5, alkaline phosphatase activity.
References: 1. Burstone, M. (1964). Gistokhimiya fermentov [Enzyme histochemistry]. Moscow: Mir, 464 p. (in Russian)
2. Dallakyan G. A., Korsak M. N., Mosharov S. A. (2002). Vliyaniye medi na produktsionnye protsessy v Baltiyskom more [Effect of copper on production processes in the Baltic Sea]. Vestnik Moskovskogo Universiteta. Seriya16. Biologiya, No. 1, pp. 42–45 (in Russian).
3. Dmitriyeva, A. G. (2011). Zakonomernosti deystviya toksikantov na vodnye rastitelnye organizmy [Regularities in toxicants’ effect on aquatic plant organisms]. In: Sovremennye problemy vodnoy toksikologii [Modern problems of aquatic toxicology]. Petrozavodsk: Publishing House of the Petrozavodsk State University, pp. 42–44 (in Russian).
4. Zakrutkin, V. E., Ivanik, V. M., Gibkov, E. V. (2015). Izmeneniye gidrokhimicheskikh pokazateley rek Vostochnogo Donbassa v svyazi s massovoy likvidatsiey nerentabelnykh ugledobyvayushchikh predpriyatiy [Changes in the hydrochemical characteristics of Eastern-Donbass rivers in the context of mass closing down of unprofitable coal producers]. Water Resources, vol. 42, No. 6, pp. 613–622 (in Russian).
5. Kapkov, V. I., Belenkina, O. A., Fedorov, V. D. (2011). Vliyaniye tyazhelykh metallov na morskoy fitoplankton [Effect of heavy metals on marine phytoplankton]. Vestnik Moskovskogo Universiteta. Seriya 16. Biologiya, No. 1, pp. 36–40 (in Russian).
6. Konovalov, G. S., Koreneva, V. I. (1979). Vynos mikroelementov rechnym stokom s territorii SSSR v morya v sovremenny period [Removal of microelements by river flow from the territory of the USSR to the seas in the modern period]. Gidrokhimicheskiye Materialy, vol. LXXV, Leningrad: Gidrometeoizdat, pp. 11–21 (in Russian).
7. Leonov, A. V., Lozovik, P. A., Ikko, O. I. (2018). Ispolzovaniye eksperimentalnykh dannykh po biokhimicheskomu potrebleniyu kisloroda dlya korrektnoy otsenki sostoyaniya vodnykh obyektov i kachestva prirodnykh vod [Using experimental data on biochemical oxygen demand for correct assessment of the status of water bodies and the quality of natural waters]. Transactions of Karelian Research Center of Russian Academy of Science, No. 3, pp. 11–30 (in Russian).
8. Linnik, P. N., Nabivanets, B. I. (1986). Formy migratsii metallov v presnykh poverkhnostnykh vodakh [Migration forms of metals in fresh surface waters]. Leningrad: Gidrometeoizdat, 270 p. (in Russian).
9. Interstate Council for Standardization, Metrology and Certification (2013). GOST 31861-2012. Voda. Obshchie trebovaniya k otboru prob [State Standard GOST 31861-2012. Water. General requirements for sampling] Moscow: Standartinform, 35 p. (in Russian).
10. Volovik, S. P., Korpakova, I. G. (2005). Metody rybokhozyaystvennykh i prirodookhrannykh issledovaniy v Azovo-Chernomorskom basseyne [Methods of fishery and environmental research in the Azov–Black Sea basin]. Krasnodar: Prosveshcheniye-Yug, 351 p. (in Russian).
11. Russian Federal Research Institute of Fisheries and Oceanography (2011). Normativy kachestva vody vodnykh obyektov rybokhozyaystvennogo znacheniya, v tom chisle normativov predelno dopustimykh kontsentratsiy vrednykh veshchestv v vodakh vodnykh obyektov rybokhozyaystvennogo znacheniya [Water quality standards for fishery water bodies, including maximum permissible concentrations of hazardous substances in waters of fishery water bodies] Moscow: Publishing House of the Russian Federal Research Institute of Fisheries and Oceanography, 257 p. (in Russian).
12. Predeina, L. M., Fedorov, Yu. A., Morozova, E. V., Urazaev, K. K., Predein, M. N. (2003). Pokazateli aktivnosti shchelochnoy fosfatazy i esteraz v monitoringe poverkhnostnykh vod — teoreticheskiye predposylki i perspektivy ispolzovaniya [Indices of activity of alkaline phosphatase and esterases in monitoring surface waters — theoretical background and prospects for use]. University News. North-Caucasian Region. Natural Sciences, No. 4, pp. 91–95 (in Russian).
13. Predeina, L. M., Beisug, O. I., Predein, M. N. (2006). Vliyaniye povyshennykh koncentratsiy tsinka i zheleza na aktivnost vnekletochnykh esteraz i shchelochnoy fosfatazy v prirodnykh i modelnykh presnovodnykh ekosistemakh [Effect of elevated zinc and iron concentrations on the activity of extracellular esterases and alkaline phosphatases in natural and model freshwater ecosystems]. University News. North-Caucasian Region. Natural Sciences, No. 7, pp. 69–81 (in Russian).
14. Predeina, L. M., Fedorov, Yu. A., Beisug, O. I., Predein, M. N. (2006). Vliyaniye ionov medi i rtuti na pokazateli aktivnosti vnekletochnykh esteraz i shchelochnoy fosfatazy v vodnykh ekosistemakh [Influence of copper and mercury ions on the activity of extracellular esterases and alkaline phosphatase in aquatic ecosystems]. Inland Water Biology, No. 2, pp. 89–96 (in Russian).
15. Predeina, L. M. (2008). Vliyaniye dobavok medi i tsinka na aktivnost shchelochnoy fosfatazy i esteraz sestona v eksperimentakh na prirodnykh vodakh [Effect of copper and zinc additives on the activity of alkaline phosphatase and seston esterases in experiments in natural waters]. University News. North-Caucasian Region. Natural Sciences, No. 6, pp. 101–107 (in Russian).
16. Predeina, L. M., Shtylev, A. N. (2012). Vliyaniye tyazhelykh metallov na biokhimicheskoye potrebleniye kisloroda v eksperimentakh na prirodnykh vodakh [Effect of heavy metals on biochemical oxygen demand in experiments in natural waters]. In: Mezhdunarodnaya nauchnaya konferentsiya po regionalnym problemam gidrometeorologii i monitoringa okruzhayushchey sredy [International Scientific Conference on the Regional Problems of Hydrometeorology and Monitoring of the Environment]. Kazan: Publishing House of the Kazan Federal University, pp. 299–300 (in Russian).
17. Predeina, L. M., Khoroshevskaya, V. O., Andreev, Yu. A., Kotova, V. E., Tambieva, N. S., Klimeriy, K. S. (2015). Vliyaniye vanadiya (V) na aktivnost shchelochnoy fosfatazy sestona i nekotorye gidrohimicheskiye pokazateli v laboratornom eksperimente [Effect of vanadium (V) on the activity of seston alkaline phosphatase and some hydrochemical indices in laboratory experiments]. In: Sovremennye problemy gidrokhimii i monitoringa kachestva poverkhnostnykh vod. Ch. 2 [Modern Problems of Hydrochemistry and Monitoring of Surface Waters Quality. Part 2]. Rostov-on-Don: Tsentr Pechatnykh Tekhnologiy “Art-Artel”, pp. 372–376 (in Russian).
18. Abakumov, A. V. (ed.) (1992). Rukovodstvo po gidrobiologicheskomu monitoringu presnovodnykh ekosistem [Guidelines for hydrobiological monitoring of freshwater ecosystems]. Saint Petersburg: Gidrometeoizdat, 254 p. (in Russian).
19. Agatova, A. I. (ed.) (2004). Rukovodstvo po sovremennym biokhimicheskim metodam issledovaniya vodnykh ekosistem, perspektivnykh dlya promysla i marikultury [Guide to modern biochemical methods for studying aquatic ecosystems promising for fisheries and mariculture]. Moscow: Publishing House of the Russian Federal Research Institute of Fisheries and Oceanography, 123 p. (in Russian).
20. Boyeva, L. V. (ed.) (2009). Rukovodstvo po himicheskomu analizu poverhnostnyh vod sushi. Ch.1. [Guide to the chemical analysis of surface waters of the land. Part 1]. Rostov-on-Don: NOK, 1044 p. (in Russian).
21. Khoroshevskaya, V. O. (2015). Rezultaty ekspeditsionnykh issledovaniy soderzhaniya vanadiya, nikelya i molibdena v vodakh rek Priazovya [The results of filed study of vanadium, nickel and molybdenum content in Azov rivers]. Global Scientific Potential, No. 2 (47), pp. 7–12 (in Russian).
22. Yakushina, N. I., Bakhtenko, E. Yu. (2004). Fiziologiya rasteniy [Plant Physiology]. Moscow: Vlados, 463 p. (in Russian). 23. Awasthi, M., Das, D, N. (2005). Heavy metal stress on growth, photosynthesis and enzymatic activity of free and immobilized Chlorella vulgaris. Annals of Microbiology, vol. 55, No. 1, рр. 1–7.
24. Glenn, A. R., Dilworth M. J. (1980). The effect of metal ions on the alkaline phosphatase of Rhizobium leguminosarum. Archives of Microbiology, vol. 126, issue 3, pp. 251–256. https://doi.org/10.1007/BF00409928
25. Gupta, S. L. (1983). Acid and phosphatase activity in the cyanobacterium Anacystis nidulans under copper stress. Folia Microbiologica, vol. 28, issue 6, pp. 458–462. https://doi.org/10.1007/BF02879682
26. Doonan, B. B., Jensen, T. E. (1979). Effect of ions on the enzyme alkaline phosphatase from Plectonema boryanum. Microbios, vol. 25 (101–102), pp. 177–186.
27. Flint, K. P., Hopton, J. W. (1977). Substrate specificity and ion inhibition of bacterial and particle associated alkaline phosphatases of water and sewage sludges. European Journal of Applied Microbiology and Biotechnology, vol. 4, issue 3, pp. 195–204. https://doi.org/10.1007/BF01390480

Ulyasheva V. M., Grimitlin A. M., Сhernikov N. A.INCREASING THE EFFICIENCY OF METHODS FOR CLEANING OF VENTILATION EMISSIONS AT CONSTRUCTION ENTERPRISES
DOI: 10.23968/2305-3488.2018.23.4.92-98

Production of building materials, based on processes of crushing, sorting, firing and transportation of raw and other materials, represents a source of significant dust at production facilities and in the environment. Due to high humidity of feedstock in dust-air flows of aspiration systems in the cold period of the year, solid deposits form on the inner surfaces of cyclones, leading to a decrease in their efficiency, and in some cases — to failure. Taking into account the availability of a limestone flour production shop at the industrial site, where the production process is related to firing of raw materials, it is proposed to mix hot process (exhaust) gases from the limestone flour production shop and cold dust-air flows to reduce the thermal effect on the atmosphere, improve the efficiency of cleaning ventilation emissions from the shop of non-metallic materials, and economic performance of the enterprise. Despite the significant amount of publications related to studies of aerodynamic processes in aspiration systems, processes of mixing low-temperature dust-air flows and high-temperature exhaust-gas flows require theoretical analysis methods based on the fundamental provisions of heat and mass transfer and aerodynamics, as well as modern computer programs. In this paper, on the basis of numerical simulation, using the STAR-CCM+ software package, data on distribution of temperatures and velocities in the flow mixing zone are obtained, and, as a result, a rationale for the optimal scheme of the flow mixing joint, as well as the ratio of cold and hot flow rates, is provided.
Key words: aspiration system, limestone flour, cyclone, dust-air flow, numerical simulation.
References: 1. Abramovich, G. N. (1984). Teoriya turbulentnykh struy [The theory of turbulent jets]. 2nd edition. Moscow: Nauka, 717 p. (in Russian).
2. Azarov, V. N. (2004). Kompleksnaya otsenka pylevoy obstanovki i razrabotka mer po snizheniyu zapylennosti vozdushnoy sredy promyshlennykh predpriyatiy [Integrated assessment of dust conditions and development of dust control measures in industrial enterprises]. Extended abstract of the PhD thesis in Engineering. Rostov-on-Don: Rostov State University (in Russian).
3. Aliyev, G. M.-A. (1986). Tekhnika pyleulavlivaniya i ochistki promyshlennykh gazov [Dust collection and treatment of industrial gases]. Moscow: Metallurgiya, 544 p. (in Russian).
4. Ametistov, Ye. V., Grigoryev, V. A., Yemtsev, B. T., Klimenko, A. V., Komendantov, A. S., Krug, G. K., Kuvaldin, A. B., Labuntsov, D. A., Morozkin, V. P., Pavlov, Yu. M., Protopopov, V. S., Soziyev, R. I., Totsky, V. R., Chistyakov, V. S, Shpilrayn, E. E., Yagov, V. V. (1982). Teplo- i massoobmen. Teplotekhnichesky eksperiment [Heat and mass exchange. Heat engineering experiment]. Moscow: Energoizdat, 512 p. (in Russian).
5. Birger, M. I., Valdberg, A. Yu., Myagkov, B. I., Padva, V. Yu., Rusanov, A. A., Urbakh, I. I. (1983). Spravochnik po pyle- i zoloulavlivaniyu [Handbook on dust and ash collection]. 2nd edition. Moscow: Energoatomizdat, 312 p. (in Russian).
6. Bolshakov, V. P., Bochkov, A. L. (2012). Osnovy 3D-modelirovaniya. Izuchayem rabotu v AutoCAD, KOMPAS-3D, Solid Works, Inventor [Fundamentals of 3D modeling. Studying AutoCAD, KOMPAS-3D, Solid Works, Inventor]. Saint Petersburg: Piter-Press, 304 p. (in Russian).
7. Bochkov A. L. (2007). Trekhmernoye modelirovaniye v sisteme Kompas-3D (prakticheskoye rukovodstvo) [3D modeling in Kompas-3D (practical guide)]. Saint Petersburg: Saint Petersburg State University of Information Technologies, Mechanics and Optics, 80 p. (in Russian).
8. Ganin, N. B. (2012). Trekhmernoye proyektirovaniye v KOMPAS-3D [3D design in KOMPAS-3D]. Moscow: DMK-Press, 784 p. (in Russian).
9. Gubin, Ye. I. (2018). K voprosu modelirovaniya protsessa smeshivaniya zapylennykh potokov [Concerning modeling of the process for mixing of dust-laden flows]. In: XXX Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya molodykh uchyonykh, aspirantov i doktorantov “Aktualnye problemy nauki 21 veka” [30th International Scientific and Practical Conference of Young Scientists, PhD Students and Second Doctorate Students “Current Issues of Science in the 21st Century”], Moscow: Cognitio, pp. 35–40 (in Russian).
10. Klyachko, L. S., Odelsky, E. Kh., Khrustalev, B. M. (1983). Pnevmatichesky transport sypuchikh materialov [Pneumatic transport for bulk materials]. Minsk: Nauka i Tehnika, 216 p. (in Russian).
11. Kouzov, P. A., Malgin, A. D., Skryabin, G. M. (1993). Ochistka gazov i vozdukha ot pyli v khimicheskoy promyshlennosti [Gas and air de-dusting in chemical industry]. 2nd edition. Saint Petersburg: Khimiya, 320 p. (in Russian).
12. Kunichan, G. I., Smirnova, T. N., Idt, L. I. (2016). Postroyeniye obyemnykh modeley v sisteme KOMPAS-3D [Building 3D models in KOMPAS-3D]. Biysk: Publishing Center of the Altai State Technical University, 65 p. (in Russian).
13. Minko, V. A., Logachyov, I. N., Logachyov, K. I. (2009). Obespylivayushchaya ventilyatsiya [De-dusting ventilation system]. Moscow: Teplotekhnik, 464 p. (in Russian).
14. Neykov, O. D., Logachyov, I. N. (1981). Aspiratsiya i obespylivaniye vozdukha pri proizvodstve poroshkov [Air aspiration and de-dusting in powder manufacturing]. 2nd edition. Moscow: Metallurgiya, 192 p. (in Russian).
15. Pirumov, A. I. (1981). Obespylivaniye vozdukha [Air de-dusting]. 2nd edition. Moscow: Stroyizdat, 296 p. (in Russian).
16. Ulyasheva, V. M., Dubenkov, S. V., Basova, Yu. A., Sorokin, N. A. (1998). Sistema ventilyatsii tsekha s pylevydeleniyami [Ventilation system of shop with dust formations]. Patent No. 2110735 (in Russian).
17. Boysan, F., Ayers, W.H., Swithenbank, J. (1982). A fundamental mathematical modelling approach to cyclone design. Chemical Engineering Research and Design, 60a, pp. 222-230.
18. Gosman, A. D., Ioannides, E. (1983). Aspects of computer simulation of liquid- fueled combustors. Journal of Energy, vol. 7, No. 6, pp. 482–490.
19. Hoekstra, A. J., Derksen, J. J., Van Den Akker, H. E. A. (1999). An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical Engineering Science, vol. 54, issues 13–14, pp. 2055–2065. https://doi.org/10.1016/S0009-2509(98)00373-X
20. Pant, K., Crowe, C. T., Irving, P. (2002). On the design of miniature cyclone for the collection of bioaerosols. Powder Technology, vol. 125, issues 2–3, pp. 260–265. https://doi.org/10.1016/S0032-5910(01)00514-9
21. Sommerfeld, M., Ho, C. H. (2003). Numerical calculation of particle transport in turbulent wall bounded flows. Powder Technology, vol. 131, issue 1, pp. 1–6. https://doi.org/10.1016/S0032-5910(02)00293-0